Skip to main content

Table 4 Multiclass classification performances of machine learning models in estimation of oral cancer survival time

From: Survival estimation of oral cancer using fuzzy deep learning

Models

Class

Precision

Recall (Sensitivity)

F1-score

Accuracy

Specificity

AUC of ROC curve

Support Vector Machines

Class 0: 0 – 12 months

0.53

0.26

0.35

0.74

0.77

0.59

Class 1: 13 – 24 months

0.13

0.46

0.20

0.59

0.90

0.53

Class 2: 25 – 36 months

0.11

0.14

0.13

0.88

0.94

0.53

Class 3: 37 – 48 months

0.13

0.25

0.17

0.91

0.97

0.59

Class 4: 49 – 60 months

0.00

0.00

0.00

0.97

0.99

0.49

Class 5: > 60 months

0.62

0.35

0.45

0.55

0.52

0.56

    

Overall accuracy = 0.90

  

Random Forest

Class 0: 0 – 12 months

0.55

0.68

0.61

0.77

0.87

0.74

Class 1: 13 – 24 months

0.29

0.31

0.30

0.84

0.91

0.61

Class 2: 25 – 36 months

0.00

0.00

0.00

0.92

0.94

0.49

Class 3: 37 – 48 months

0.00

0.00

0.00

0.95

0.96

0.49

Class 4: 49 – 60 months

0.00

0.00

0.00

0.99

0.99

0.50

Class 5: > 60 months

1.00

1.00

1.00

1.00

1.00

1.00

    

Overall accuracy = 0.91

  
  1. AUC Area under the receiver operating characteristic (ROC) curve