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Abstract 

Background: Recently, the possibility of tumour classification based on genetic data has been investigated. How-
ever, genetic datasets are difficult to handle because of their massive size and complexity of manipulation. In the 
present study, we examined the diagnostic performance of machine learning applications using imaging-based clas-
sifications of oral squamous cell carcinoma (OSCC) gene sets.

Methods: RNA sequencing data from SCC tissues from various sites, including oral, non-oral head and neck, 
oesophageal, and cervical regions, were downloaded from The Cancer Genome Atlas (TCGA). The feature genes were 
extracted through a convolutional neural network (CNN) and machine learning, and the performance of each analysis 
was compared.

Results: The ability of the machine learning analysis to classify OSCC tumours was excellent. However, the tool 
exhibited poorer performance in discriminating histopathologically dissimilar cancers derived from the same type of 
tissue than in differentiating cancers of the same histopathologic type with different tissue origins, revealing that the 
differential gene expression pattern is a more important factor than the histopathologic features for differentiating 
cancer types.

Conclusion: The CNN-based diagnostic model and the visualisation methods using RNA sequencing data were 
useful for correctly categorising OSCC. The analysis showed differentially expressed genes in multiwise comparisons 
of various types of SCCs, such as KCNA10, FOSL2, and PRDM16, and extracted leader genes from pairwise comparisons 
were FGF20, DLC1, and ZNF705D.
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Background
Traditionally, the choice of treatment modality for can-
cer primarily depends on the histopathologic diagnosis, 
and a definite diagnosis plays a major role in choosing a 

treatment strategy and determining the prognosis of the 
disease [1, 2]. Thus, though the importance of an accurate 
diagnosis of cancer is substantial, studies on the develop-
ment of new classifications of tumour types are rare, and 
current classification schemes primarily depend on the 
morphologic characteristics of tumour cells and tissues 
[3, 4]. However, there are numerous examples of cancers 
with the same diagnostic classification (based on similar 
histopathologic features) having different responses to 
therapies. These differences result from alterations of the 
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biological behaviour of cancer cells via genetic variations 
as well as environmental factors [5–7]. Thus, a diagnostic 
model that predicts the biological behaviour of cancers 
by considering their genetic characteristics rather than 
only morphologic characteristics needs to be developed.

Understanding the genetic heterogeneity of cancers 
can provide clues for increasing diagnostic accuracy 
and developing efficient biomarkers as well as improv-
ing treatment efficacy [8–11]. A massive amount of can-
cer tissue genomic data have been generated due to the 
development of next-generation sequencing methods 
with high efficiency and accuracy, and most of the data 
are housed by The Cancer Genome Atlas (TCGA) data-
base [12–14]. Using RNA sequencing expression data, 
studies have attempted to find a diagnostic model that 
can efficiently and rapidly discriminate different tumours 
by simultaneously considering both genetic phenotypic 
features [15–17]. Due to the difficulty in manually inter-
preting genomic datasets, various machine learning 
methods that are trained on differentially expressed gene 
sets across tumours have been used to analyse and clas-
sify tumours based on tumour-specific gene expression 
[18]. However, using generic machine learning meth-
ods such as genetic algorithms yields high dimensional-
ity of the genomic dataset, and innovative methods are 
continuously being developed to increase performance. 
Recently, Lyu et  al. developed a more efficient method 
by applying convolutional neural network (CNN) image 
classification, which is a state-of-the-art method for solv-
ing classification problems [19]. In addition, deep learn-
ing methods exploiting image classification/recognition 
have been suggested, and these methods have displayed 
excellent performance as well as a low error rate [17, 
20]. Using methods such as these, tumour classifications 
based on machine learning analysis of genetic data have 
been rapidly developed and tested. However, research to 
establish a classification system to diagnose oral squa-
mous cell carcinoma (OSCC) using genetic data is rare.

OSCC, the most common cancer of the oral cavity, 
derives from the oral mucosa (which is lined by stratified 
squamous epithelium) and shares morphologic findings 
and histochemical features with SCC of other sites or tis-
sues. All SCCs are diagnosed as the same type of disease 
due to similar histologic findings, but the gene expression 
of each SCC has not been compared. Therefore, it is not 
well understood whether the genetic features of SCCs 
of various tissues or organs are similar. Knowledge of 
the genetic features distinguishing OSCC from SCCs of 
other tissues might provide clues for differential diagno-
sis and the development of treatment paradigms. In the 
present study, we examined the diagnostic performance 
of machine learning applications using CNN image clas-
sification for OSCC samples. In addition, we investigated 

the differences in genetic features between OSCC and 
other types of SCC, which may provide a basic rationale 
for potential diagnostic models and the development of 
targeted therapy.

Methods
Data procurement
RNA sequencing data from samples of OSCC, non-
oral head and neck SCC (HNSCC), oesophageal SCC, 
oesophageal adenocarcinoma, and cervical SCC were 
downloaded from the TCGA database (http:// cance rgeno 
me. nih. gov/). The platforms used, experiment types, and 
numbers of samples analysed for mRNA expression for 
each cancer are shown in Additional file 1: Table S1.

Computational analysis
The workflow of our study is shown in Fig. 1. The feature 
extraction for differentiating SCCs based on gene expres-
sion was performed using the protocol in reference with 
a few modifications and consists of 4 steps: (1) data pre-
processing, ((2) differentiation using CNN [21, 22], (3) 
heatmap generation, and ((4) feature extraction. The 4 
steps are briefly explained below, and the detailed meth-
ods for CNN and heatmap generation are described in 
the following sections.

Data preprocessing
To cope with high-dimensional expression data, the RNA 
sequencing data of the TCGA dataset were embedded 
into 1-D images. Briefly, the normalised read count data 
of each gene with enormous values were transformed by 
using y = log2(x + 1), and noise data were filtered out 
by using a variance threshold of 1. Then, the data were 
embedded into 1-D images.

Differentiation
The differentiation step used the CNN model to process 
the 1-D images output from the preprocessing step. The 
training and testing were performed using a 10-fold cross 
validation method.

Heatmap generation
The class activation map method was used to visualise 
what the CNN had learned and heatmap images repre-
senting the contribution of each gene were produced 
from the image input.

Feature extraction
Since each pixel corresponds to one gene, feature extrac-
tion methods take the most important pixels with the 
most intensity within the image and categorise the corre-
sponding represented genes into a list of dominant genes.

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
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CNN analysis
A CNN model [21, 22], which has multiple layers consist-
ing of three convolutional layers and four fully connected 
layers, was implemented in this experiment. The first 
convolutional layer ‘conv1’ contained 64 different filters, 
while the second convolutional layer ‘conv2’ and the third 
convolutional layer ‘conv3’ contained 128 and 256 filters, 
respectively. Both a max-pooling layer and a batch-nor-
malisation layer immediately followed each convolutional 
layer. A drop-out layer was added before entering the 
fully connected layer, and the drop-out rate was 25%. 
The sizes of the three fully connected layers were 36,864, 
1,024, 512, and 256. We chose the cross-entropy method 
as a loss function and the Adam optimiser to update the 
weights. We used a tenfold cross validation method to 
train the CNN and to test the performance.

CNN visualisation
Because we needed to extract features learned through 
CNN analysis, we employed the class activation map 
(CAM) method to visualise the learned features from the 
CNN output. The CAM method helps understand what 
regions of an input image influence the CNN’s output 
prediction. The technique relies on the generation of a 
heatmap for visualisation, which highlights pixels of the 
image that trigger the model to associate the image with 
a particular class. In this experiment, since each pixel 

represented a corresponding gene, the CAM method 
could visualise which gene was dominant for each type 
of cancer.

Results
The diagnostic tool using machine learning computational 
analysis exhibited excellent performance in the diagnosis 
of OSCC but had limited utility differentiating OSCC 
from non‑oral HNSCC
To evaluate the performance of the tool in OSCC diag-
nosis, its performance capabilities, such as test recall, 
test precision, and test accuracy, were compared using 
the dataset containing OSCC, non-oral HNSCC, cervical 
SCC, and oesophageal SCC samples in a multiwise fash-
ion. After repeated training using the dataset, the tool 
showed ~ 82% test precision and test accuracy in diagnos-
ing SCCs of various origins (Fig. 2A). When the perfor-
mance of the diagnostic tool was compared in a pairwise 
way, it showed a much higher accuracy, precision, recall, 
and F1 score in differentiating between OSCC and 
oesophageal SCC and cervical SCC than it did when it 
was compared in a multiwise fashion, suggesting the pos-
sibility that this model could be utilised as a diagnostic 
tool. However, the comparison considering OSCC and 
non-oral HNSCC exhibited much lower test accuracy as 
well as other factors, including test precision and train-
ing accuracy, suggesting the difficulty of differentiating 

Fig. 1 The workflow of this study
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OSCC from non-oral HNSCC (Fig. 2B). The authors sus-
pect that the problem may be related to the close spatial 
relationship between the two types of tumours. To define 
factors responsible for this difference, the performance of 
the tool in distinguishing oesophageal SCC from oesoph-
ageal adenocarcinoma, which is another common cancer 
in the oesophagus, was analysed. The tool displayed low 
performance (~ 58%) in distinguishing specific types of 
oesophageal cancers, whereas the tool showed high dis-
criminatory performance in comparisons of oesophageal 
SCC with other SCCs even though these SCCs resem-
ble each other histopathologically. In addition, the tool 
exhibited high performance in discriminating non-oral 
HNSCC from SCCs of other tissue origins (Fig.  3). The 
findings suggest that the tool shows better performance 
in diagnosing cancers of different tissue origins than in 
discriminating histopathologically different cancers that 
are derived from the same type of tissue.

Analysis of the diagnostic tool using machine learning 
classification suggests that a differential pattern of gene 
expression is a more important factor than histopathologic 
features for differentiating cancer types
To clearly determine diagnostic accuracy in differen-
tiating OSCC from SCC of other tissues or organs, a 
confusion matrix was generated, as shown in Fig.  4. 
Oesophageal and cervical SCCs were classified correctly 
at accuracies of 99% and 98%, respectively, and 83% of 
OSCC was also correctly diagnosed. However, more 
than half of the non-oral HNSCCs were misclassified as 
OSCC, and 15% of OSCC were misclassified as non-oral 
HNSCC, further confirming the lower efficiency in dis-
criminating OSCC from non-oral HNSCC (Fig. 4).

To further clarify the importance of the origin of 
cancer cells, the set of differentially expressed genes 
between oesophageal squamous cell carcinoma (ESCC) 
and oesophageal adenocarcinoma was compared to that 

Fig. 2 Performances of our method which compared various types of squamous cell carcinoma (SCC) genetic set in multiwise fashion (A) and 
compared individually oral SCC with other SCC (B)

Fig. 3 Performances of our method which compared non-oral head and neck SCC with oesophageal using SCC genetic set
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between OSCC and ESCC. Although both OSCC and 
ESCC share very similar histopathologic features, the 
machine learning tool differentiated them easily, with 
only ~ 2% error when discriminating ESCC from OSCC, 
whereas 38% of ESCCs were misdiagnosed as oesopha-
geal adenocarcinoma (Fig. 5A, B), implying that the gene 
expression pattern depends more on the site of tumour 
occurrence than the histopathologic identity and thus 
that tissue origin is a more important factor in determin-
ing tumour characteristics.

To identify valuable genes for diagnosing OSCC, the 
dominant genes that could discriminate OSCC from 

other SCCs were extracted through the class activation 
map feature extraction method in a multiwise manner. 
In addition, data on the characteristic genes of OSCC 
were extracted by individually comparing OSCC with 
other types of SCC in a pairwise manner: comparison 
(1) between OSCC and non-oral HNSCC, (2) OSCC and 
cervical SCC, and (3) OSCC and ESCC. Then, the shared 
genes from each comparison were selected (Table 1). We 
compared those genes from the extraction methods and 
found no consistent genes.

Discussion
In the present study, we evaluated whether a diagnostic 
model based on CNN and visualisation methods using 
RNA sequencing data were useful in correctly recognis-
ing OSCC. We observed that there were no problems 
in differentiating OSCC from oesophageal or cervical 
SCCs, implying that OSCCs exhibit distinct gene expres-
sion from other SCCs and that histopathologic features 
cannot correctly reflect the genetic features of cancer 
cells. However, discrimination of OSCC from non-oral 
HNSCC was very difficult, and the discriminative abil-
ity of the model increased as distance from oral mucosa 
increased. Although it used a different data process-
ing from ours, a previous study on molecular diagnostic 
methods using whole transcriptome RNA sequencing 
data from TCGA showed that oesophageal carcinomas 
were misclassified as stomach cancers. Their model also 
reported problems in distinguishing cervical cancers of 
different histopathologic types, such as SCC, adenos-
quamous carcinoma, and adenocarcinoma [11]. In this 
study, we also observed a similar limitation in differential 
diagnosis of different oesophageal cancers; for example, 

Fig. 4 The confusion matrix for classification of SCCs

Fig. 5 The confusion matrix for differentiation diagnosis of OSCC from oesophageal SCC (A) and of oesophageal cancers (B)
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distinguishing SCC from adenocarcinoma with com-
pletely different morphologic features. It appears that 
genetic variations of cancer cells are site-specific, pre-
sumably with similar genetic background shared by the 
same site of origin. Accordingly, the intrinsic property 
of our data processing algorithm did not allow us to pre-
cisely discriminate cancers with different histopatho-
logic findings once they are originated from the same 
tissue. While this limitation may restrict the efficacy of 
our computational analysis and needs to be improved for 
clinical applications, it could also validate the effective-
ness of our system in detecting site-specific genetic vari-
ations. Together with a successful differential diagnosis 
of OSCC from oesophageal or cervical SCCs, these data 
provide further support to the power of our approach 
in improving diagnostic accuracy based upon genetic 
information. It should be noted that similar histopatho-
logic features at a macroscopic level could develop from 
diverse arrays of genetic alterations at a molecular level. 
With this regard, it is crucial to dissect precise genetic 
programs underlying macroscopically similar histologic 
features to fully understand the pathophysiology of indi-
vidual cancers. Therefore, information on tissue origin-
based genetic variations could significantly contribute to 
successful implementation of cancer treatment remedies 
that mainly relies on complete comprehension of genetic 

changes and subsequent identification of optimized ther-
apeutic targets.

Through the process of computational analysis for 
developing diagnostic models in this study, we were able 
to identify a set of genes with differential expression rel-
evant to SCCs. Interestingly, the lists of genes extracted 
with different analytical methods were mutually exclu-
sive. For example, a single groupwise comparison 
among all types of SCCs indicated KCNA10, FOSL2, and 
PRDM16 as the top 3 candidates useful for the diagno-
sis of OSCC, whereas FGF20, DLC1, and ZNF705D were 
extracted as leader genes from pairwise comparisons. 
Furthermore, these two methods yielded non-overlap-
ping sets of the top 20 candidate genes characteristic of 
OSCC. It is plausible that the commonly shared genes in 
all SCC types are often excluded from the final list of can-
didates in a single-grouped analysis, leaving only those 
with differential expression to be further considered. In 
contrast, the candidates more relevant to the identity 
of affected tissues in each SCC appear more likely to be 
extracted from pairwise comparisons, in line with the 
significant influence of tissue proximity on the genomic 
profiles relevant for the diagnosis of various SCCs. These 
analysis-specific outcomes may introduce confusion in 
developing common diagnostic tools or therapeutic tar-
gets based upon bioinformatical analyses of widely vari-
able control and tissue types. Such diversity of extracted 
candidate genes in a method-dependent manner thus 
need to be further investigated to develop optimized ana-
lytical means for genomic profiles specific to individual 
cancer, such as OSCC, with the help of biological and 
experimental studies in combination.

In addition, a previous study using the TCGA and 
Gene Expression Omnibus (GEO) databases reported 6 
primitive biomarkers of OSCC (GNA14, CMA1, DKK1, 
HOXC6, HCG22, and HOTTIP) that were not found in 
our results [13]. This discrepancy may be due to differ-
ences in the targets being compared. The study of Huang 
et al. identified genes by comparing gene expression pro-
files of OSCC tissue and normal controls, whereas we 
extracted diagnostic markers of OSCC by analysing SCCs 
of other tissues, and the extracted genes in this study are 
being reported in this context for the first time. Among 
the identified genes, PRDM16 and DLC1 have been stud-
ied in various types of cancers, and the significance of 
these genes in OSCC has not been examined [23–26]. 
Furthermore, the roles of KCNA10 and ZNF705D in the 
pathogenesis of cancer, including OSCC, have not been 
investigated, implying the novel insights gained from 
this study and new avenues for the diagnosis of and new 
treatment strategies for OSCC.

In summary, we implemented a computation approach 
to develop novel biomarkers for OSCC based upon 

Table 1 List of 20 leader genes of OSCC extracted from machine 
learning tumour classification

No. Gene name

Multi‑wise Pair‑wise

1 KCNA10 FGF20

2 FOSL2 DLC1

3 PRDM16 ZNF705D

4 LUZP1 TUSC3

5 PAPOLG SLC7A2

6 SIPA1L2 LGI3

7 TEX261 NUDT18

8 BCL10 MTUS1

9 NBPF14 PIWIL2

10 LAMC1 STC1

11 ERRFI1 CDCA2

12 PRAMEF20 DOCK5

13 FMO2 TIMM8A

14 GPA33 CENPI

15 PLA2G5 TSPAN6

16 TMEM167B ARMCX6

17 GRIK3 TCEAL7

18 RPTN TCEAL5

19 GPBP1L1 NXF3

20 NHLH1 TCEAL6
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site-specific genetic variations that occur during the pro-
cess of cancer progression. Further validation of these 
biomarkers in both experimental and clinical settings will 
strengthen the power of this computation approach in 
improving the accuracy of diagnosis and the assessment of 
treatment outcome and prognosis, in addition to its aid in 
development of optimized therapeutic strategies.
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