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Introduction
Oral cancer ranks 18th among 36 major cancers world-
wide, with an estimated 377,731 new diagnoses and over 
177,757 deaths in 2020 [1]. According to the latest epi-
demiological survey data released by the American Can-
cer Society in 2023, there are 54,540 new cases of oral 
cancer and 7,400 deaths annually in the United States 
[2]. The 5-year survival rate for U.S. patients diagnosed 
with localized disease is 83%, compared to only 32% for 
patients with metastatic cancer [3]. More than two-thirds 
of oral cancers are detected after distant metastasis, 
marking the highest incidence and mortality rates among 
major cancers [4]. Therefore, early detection is essential 
to ensure optimal outcomes.
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Abstract
Objective We aimed to develop an AI-based model that uses a portable electronic oral endoscope to capture 
intraoral images of patients for the detection of oral cancer.

Subjects and methods From September 2019 to October 2023, 205 high-quality annotated images of oral cancer 
were collected using a portable oral electronic endoscope at the Chinese PLA General Hospital for this study. The 
U-Net and ResNet-34 deep learning models were employed for oral cancer detection. The performance of these 
models was evaluated using several metrics: Dice coefficient, Intersection over Union (IoU), Loss, Precision, Recall, and 
F1 Score.

Results During the algorithm model training phase, the Dice values were approximately 0.8, the Loss values were 
close to 0, and the IoU values were around 0.7. In the validation phase, the highest Dice values ranged between 0.4 
and 0.5, while the Loss values increased, and the training loss began to decrease gradually. In the test phase, the 
model achieved a maximum Precision of 0.96 with a confidence threshold of 0.990. Additionally, with a confidence 
threshold of 0.010, the highest F1 score reached was 0.58.

Conclusion This study provides an initial demonstration of the potential of deep learning models in identifying oral 
cancer.
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Early detection of oral cancer is the most effective 
method to reduce incidence and improve patient sur-
vival rates [5]. However, the detection rates of traditional 
clinical screening methods under visible light are rela-
tively low [6]. Research by Andrade et al. highlights the 
similarity between the signs and symptoms of benign and 
potentially malignant conditions and those of oral cancer 
[7]. Additionally, in resource-limited settings, the chal-
lenges of early screening are further exacerbated.

In recent years, artificial intelligence has been increas-
ingly applied in the field of stomatology [8–10].The 
implementation of artificial intelligence involves the inte-
gration of deep learning and machine learning, and sev-
eral deep learning models have been successfully applied 
in the field of computer vision. Medical image processing 
in computer vision typically includes three components: 
image classification, object detection, and semantic seg-
mentation. Numerous studies have demonstrated that 
using convolutional neural network models to detect car-
ies in X-rays or through near-ray retransmission imaging 
can achieve high accuracy [11, 12]. Additionally, dental 
caries detection has been successfully conducted using 
mobile phones and cameras to capture images of the 
mouth [13]. Furthermore, Warin K et al. have utilized 
novel deep convolutional neural networks for the early 
detection of oral cancer by analyzing photographs taken 
with a camera [14, 15].

The advancement of artificial intelligence technology 
has introduced new opportunities in the field of stoma-
tology. However, AI is often regarded as a “black box,” 
necessitating the development of specialized tools or 
equipment to make it practically useful. While mobile 
phones and cameras are potential options for capturing 
oral images, the limited space within the mouth makes 
it challenging to achieve comprehensive imaging with 
these devices, increasing the risk of missed detections.
To address this limitation, we designed and developed 
a portable oral electronic endoscope. Its “toothbrush-
like” appearance allows for easy maneuvering within the 
mouth, enabling clear and thorough imaging of each area, 
thus enhancing the effectiveness of oral cancer screening.

To our knowledge, this is the world’s first artificial 
intelligence model designed to detect oral cancer by cap-
turing RGB images with a portable oral electronic endo-
scope. Our goal is to develop a tool that can assist in the 
early detection of oral lesions by enabling patients to use 
the oral electronic endoscope to capture images, which 
can then be reviewed by professional dentists for further 
evaluation and diagnosis.Additionally, we aim to explore 
the feasibility of using this technology as an auxiliary tool 
to help identify suspicious lesions, particularly in high-
risk populations or resource-limited settings.

Materials and methods
Data source
This study was approved by the Ethics Committee of the 
PLA General Hospital (Ethics Number: S201901602) 
and was conducted in accordance with the principles of 
the Declaration of Helsinki. The 205 clinical oral pho-
tographs analyzed in this study were collected at the 
Department of Stomatology, First Medical Center of the 
PLA General Hospital using a portable oral electronic 
endoscope. The collection period spanned from Septem-
ber 2019 to December 2023. The photographic images 
were captured at four different resolutions: 2190 × 1080 
pixels, 1280 × 720 pixels, 320 × 240 pixels, and 320 × 180 
pixels. All images were normalized to a uniform resolu-
tion of 256 × 256 pixels, and this modification was con-
ducted using Python’s OpenCV library.We conducted 
a validation study to assess whether reducing image 
resolution introduced any bias. A representative sub-
set of images was selected and processed at both their 
original high resolution and at 256 × 256 pixels using 
Python’s OpenCV library. The model was then tested 
on both datasets, and key performance metrics such as 
Dice coefficient, IoU, Precision, Recall, and F1 Score were 
compared. Statistical analysis showed no significant dif-
ferences in the metrics, indicating that the reduction in 
resolution did not adversely affect model performance.
The entire study process is illustrated in Fig. 1.

Data acquisition and annotation process
All photographs were collected by students from the 
Department of Stomatology at the First Medical Center 
of the PLA General Hospital. The students were trained 
by a senior professional doctor, Dr. Haizhong Zhang, in 
the use of electronic oral endoscopy and the image acqui-
sition process.The inclusion criteria for oral cancer are 
as follows: (1)Oral masses confirmed as malignant via 
pathology (2) Pathologically confirmed diagnoses of oral 
squamous cell carcinoma (T1-T4 stages).

All images were annotated using Labelme 4.5.6 soft-
ware. Initial annotations were made by four junior doc-
tors, Liangbo Li, Nenghao Jin, Liang Zhu, and Suixin Hu. 
These annotations were then reviewed by two intermedi-
ate-level doctors, Bo Qiao and Lejun Xing, who checked 
for any omissions, mislabeling, or boundary errors. In 
cases where there were disagreements between the initial 
annotations and the review, the final decision was made 
by a senior doctor, Dr. Haizhong Zhang. The annotated 
images were saved in JSON format.

To label the images, each oral cancer area in a tooth 
image is identified and marked separately. For each iden-
tified oral cancer area, a mask of size h * w is created. In 
this mask, pixels with a value of 1 represent the presence 
of oral cancer (white area), while pixels with a value of 0 
represent non-cancerous areas (black area). If there are n 
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distinct oral cancer areas in the image, n separate masks 
are generated, each corresponding to one cancerous area. 
These n masks are then combined to form a complete 
annotation with dimensions n * h * w (Fig. 2).

Model selection
In this study, we utilized a deep learning model based on 
the U-Net architecture, which demonstrated excellent 
performance in image segmentation tasks by integrat-
ing a pre-trained ResNet-34 as the encoder. ResNet-34, 
known for its robust feature extraction capabilities, 
has achieved high accuracy in various computer vision 
tasks, as reported in several publications [16–18]. 
The ResNet-34 model used in this study was provided 
through the PyTorch deep learning framework, which 
offers pre-trained models that have been optimized on 
the ImageNet dataset.U-Net features a symmetric struc-
ture comprising two main components: the encoder and 
the decoder. The encoder captures the contextual infor-
mation of the image, while the decoder precisely locates 
the target region of interest. Our network employs con-
tinuous convolutional layers and pooling layers to pro-
gressively reduce the spatial dimensions of the feature 
map, while upsampling and feature concatenation are 
used to restore image details, achieving high-precision 
segmentation.

As the core of the encoder, ResNet-34 is a deep resid-
ual network that introduces residual learning to address 
the degradation problem in deep networks. Its structure 
comprises multiple residual blocks, enabling the net-
work to be effectively trained even at substantial depths. 
ResNet-34 has demonstrated powerful feature extraction 

capabilities in various computer vision tasks, particularly 
on the ImageNet dataset.

To leverage the network parameters already trained 
on large datasets, we selected the ResNet-34 model with 
weights pre-trained on the ImageNet dataset. These pre-
trained weights initialize the encoder of our model, sig-
nificantly enhancing the convergence rate and improving 
the model’s generalization ability.

Input data preprocessing
To ensure compatibility with the pre-trained ResNet-34 
model, we applied a series of preprocessing steps to the 
image data.

Adjust the data size and pixels to fit the ResNet-34
We used the ‘get_preprocessing’ function provided by 
the ‘segmentation_models ’Python library to adjust the 
image size and normalize pixel values, ensuring com-
patibility with the pre-trained ResNet-34 model.The 
‘get_preprocessing’ function applies a series of trans-
formations, including resizing the input images to the 
model’s required dimensions and normalizing the pixel 
values based on the mean and standard deviation of the 
ImageNet dataset. This ensures that the input data is con-
sistent with the data used during the ResNet-34 model’s 
initial training.

Data augmentation
To enhance the model’s ability to handle deformation, 
rotation, and the identification of objects at different 
scales, we applied a range of data augmentation strat-
egies to the training data. These strategies included: 
(1) random rotation of up to 1.90 degrees, (2) random 

Fig. 1 Workflow for the development of an oral cancer detection system using deep learning. Acquisition Tools: The portable oral electronic endoscope 
(right) used in this study is shown alongside an electric toothbrush (left) for scale comparison. The endoscope is designed for easy, non-invasive imaging 
of the oral cavity.Data Collection: Representative images of oral lesions captured using the portable oral electronic endoscope. These images form the 
dataset used for training and validating the deep learning model in this study.Deep Learning Model: The diagram outlines the steps involved in the deep 
learning model’s development process, including data preprocessing, model selection, choice of loss function and optimizer, model training/validation/
testing, and performance assessment
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translation up to 30% of the width and height, (3) shear 
transformation up to 50%, (4) random zoom up to 30%, 
and (5) random horizontal and vertical flips. These data 
augmentation techniques were implemented using the 
‘ImageDataGenerator ’and utilized reflection mode for 
pixel filling.

Binarization processing
For the segmentation mask, we applied binarization post-
processing after data augmentation to ensure that the 
mask retained its binary nature, with each pixel value set 
to either 0 (representing the background) or 1 (represent-
ing the foreground).

Evaluation index
The evaluation metrics in this study included the Dice 
coefficient, IoU, and Loss values. Both the Dice coef-
ficient and IoU are statistics that measure the similar-
ity between two sets, with IoU additionally accounting 
for the diversity between sample sets. Higher values 
for the Dice coefficient and IoU indicate better model 

performance. The Loss value measures the gap between 
the predicted results and the actual outcomes; a smaller 
Loss value indicates that the model’s predictions are 
closer to the actual results, reflecting better model per-
formance. In addition, Precision, Recall, and F1 Score 
are also included. Precision is the correct proportion of 
all predicted samples; recall is the proportion of correctly 
identified positive samples relative to the total number of 
actual positive samples. The F1 Score is a metric used to 
evaluate the performance of a binary classification model 
by combining precision and recall. It is the harmonic 
mean of precision and recall, providing a balanced mea-
sure of accuracy. F1 scores range from 0 to 1, with values 
closer to 1 indicating better classifier performance and 
values closer to 0 indicating worse performance.The per-
formance metrics of the model in oral cancer detection 
are detailed in Table 1.

Model and endoscopic parameters
The model is based on the Tesla V100 chip, with a sin-
gle inference speed of 29.14 ms. The training iteration 

Fig. 2 Example of oral cancer image labeling and mask generation. Left Column (Image):Original intraoral images captured using the portable oral elec-
tronic endoscope.Middle Column (Label): The corresponding labeled regions of interest (ROI) where oral cancer is present. These labels were manually 
annotated by experts to create ground truth data for training the deep learning model.Right Column (Mask):Binary masks generated from the labeled 
images, where the white regions correspond to the annotated areas of oral cancer, and the black regions represent the background. These masks are used 
by the deep learning model to learn and predict cancerous regions in new images
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reached 10 epochs, the batch size was set to 8, and the 
maximum number of detections was 50. The optimizer 
used was SGD(Stochastic Gradient Descent), with an 

initial learning rate of 0.01 and a warm-up period of 3 
epochs.

The lens of the portable electronic oral endoscope is 
a customized Zeiss lens, featuring five million pixels 
and surrounded by six white LED lights that can adjust 
the brightness across five levels. The focus range is from 
10 mm to 50 mm.

Results
Model training and validation
In Fig.  3a, the abscissa “Epochs” represents the number 
of iterations during model training, and the ordinate 
“Dice” value represents the degree of overlap between 
the predicted results and the true labels—the closer the 
Dice value is to 1, the higher the similarity. The Dice 

Table 1 Performance Metrics of the AI model in oral Cancer 
detection
Metric Training Phase Validation Phase Testing Phase
Dice Coefficient 0.80 0.40–0.50 -
IoU 0.70 0.30 -
Loss 0.00 Increased
Precision - - 0.96
Recall - - 1.00
F1 Score - - 0.58
IoU:Intersection over Union

Fig. 3 Training and validation metrics of the model. 3a:The Dice coefficient, which assesses the similarity between predicted and actual segmentation, is 
plotted for both the training (yellow line) and validation (red line) datasets. The training Dice improves consistently, while the validation Dice is unstable 
and lower, reflecting challenges in achieving consistent performance on the validation set, potentially due to the small dataset size or overfitting.3b:This 
graph shows the loss values for both the training (yellow line) and validation (red line) datasets over 50 epochs. The training loss decreases rapidly 
and stabilizes near zero, indicating effective learning from the training data. However, the validation loss spikes initially and then stabilizes at a higher 
level.3c:This graph depicts the IoU values, a metric that measures the overlap between predicted and actual segmentation regions. The training IoU (yel-
low line) increases steadily, showing improvement in model accuracy during training. In contrast, the validation IoU (red line) fluctuates significantly and 
remains lower
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coefficient is calculated using the formula: Dice coef-
ficient = 2 * TP / (2 * TP + FP + FN), where TP represents 
the number of true positive samples, FP represents the 
number of false positive samples, and FN represents the 
number of false negative samples. This formula quanti-
fies the similarity between the predicted results and the 
true labels.The yellow line represents the “Training Dice.” 
As the number of training iterations increases, the Dice 
value on the training dataset gradually improves, indicat-
ing that the model’s ability to fit the training data is being 
enhanced. The red line represents the “Validation Dice,” 
which shows the Dice value changes on the validation 
dataset. Unlike the training dataset, the scores on the 
validation dataset remained relatively stable and did not 
show significant improvement with additional training. 
This pattern suggests that our model may be overfitting, 
becoming too sensitive to the training data and less pre-
dictive for unseen data (validation datasets). This issue 
could be related to the smaller size of our dataset.

In Fig. 3b, the ordinate “Loss” represents the loss value 
during each iteration. The yellow line indicates the train-
ing loss, showing how the loss varies on the training data-
set. The red line represents the validation loss, illustrating 
how the model performs on the validation dataset. At the 
beginning of training, the validation loss initially shows 
an upward trend, likely because the model’s parameters 
have not yet been optimized, leading to a significant gap 
between the predicted results and the actual outcomes. 
As the number of iterations increases, the training loss 
gradually decreases, indicating that the model’s perfor-
mance on the training dataset is improving. Simulta-
neously, the validation loss remains relatively low and 
exhibits minimal fluctuation, suggesting that the model 
demonstrates good generalization ability on the valida-
tion dataset.

In Fig. 3c, the ordinate “IoU” (Intersection over Union) 
represents the overlap between the predicted and the 
actual bounding boxes. The closer the IoU value is to 1, 
the higher the overlap between the predicted and real 
boxes. The yellow line shows the IoU changes during 
the training phase, and around 50 epochs, the model 
finds a good optimization path, causing the IoU values 
to peak between 0.6 and 0.7. The red line represents the 
IoU changes during the validation stage. As the number 
of epochs increases, the IoU value hovers around 0.3, 
indicating that the model’s generalization ability on the 
validation dataset is weaker than on the training dataset. 
This discrepancy may be related to the relatively small 
size of our dataset.

Model testing
In Fig.  4a, Precision represents the proportion of sam-
ples that the model correctly predicts as positive for oral 
cancer. The confidence threshold is the criterion used to 

determine whether a prediction should be considered a 
positive result. When the model’s prediction confidence 
exceeds this threshold, the sample is classified as positive. 
Precision measures the accuracy of the model in identi-
fying true positive cases of oral cancer. A high precision 
rate indicates that the model is accurate in identifying 
true cases of oral cancer, while a low precision rate sug-
gests a higher likelihood of misclassifying healthy oral 
mucosa as cancerous. At a confidence threshold of 0.990, 
the model achieves a maximum precision of 0.96, mean-
ing that when the model is highly confident in its pre-
dictions (close to 1), its accuracy in correctly identifying 
positive samples is also very high, reaching 0.96.

In Fig. 4b, recall refers to the proportion of all positive 
samples that the model correctly identifies as positive. An 
ideal recall value is 1, indicating that the model success-
fully identifies all true positive samples without missing 
any. A higher recall rate reflects the model’s improved 
ability to detect positive cases. As confidence decreases, 
the recall rate reaches 1.00 at a confidence threshold of 
0.000 (the lowest confidence), suggesting that the model 
can identify nearly all positive samples at very low con-
fidence levels. However, this may also result in a higher 
number of false positives. As an early screening model 
for oral cancer, our goal is to minimize the risk of missed 
diagnoses by improving the recall rate.

In Fig. 4c, the F1 Score is a metric used to evaluate the 
performance of a binary classification model by consid-
ering both precision and recall. It is the harmonic mean 
of precision and recall, providing a balanced measure of 
accuracy. F1 scores range from 0 to 1, with values closer 
to 1 indicating better classifier performance, and val-
ues closer to 0 indicating worse performance. The curve 
starts at the top left corner, with the F1 score initially 
rising and then decreasing as the confidence threshold 
increases. At a particular threshold value (0.58), the F1 
score drops sharply, indicating poor model performance 
at this threshold. This may occur because the model 
becomes too conservative when the threshold is set too 
high, leading to many samples that should be predicted 
as positive being incorrectly classified as negative. This 
reduction in recall consequently lowers the F1 score.

In Fig. 4d, precision consistently declines as the recall 
rate increases. When selecting the optimal threshold, 
the goal is to achieve high values for both precision and 
recall. However, due to the inherent trade-off between 
these two metrics, it is impossible to maximize both 
simultaneously. The F1 score, being the harmonic mean 
of precision and recall, provides a balanced assessment of 
model performance. The model’s performance is consid-
ered optimal when the F1 score reaches its peak value of 
0.58.
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Model predictions
Figure 5 shows the results of the model predictions.

Discussion
Early screening of oral cancer is of great significance. In 
a 15-year randomized trial involving 87,655 participants 
in India, mortality in the screened population decreased 
by 81%, and the incidence of oral cancer was reduced 
by 38% [19]. A study conducted in Taiwan on oral can-
cer screening showed a 26% reduction in mortality in 
the screening group and a reduction of 57.5 per 100,000 
in the non-screening group [20]. These studies demon-
strate that screening asymptomatic individuals through 
visual examination is feasible and that early screening 

enables the early detection of oral cancer, reducing both 
morbidity and mortality [21]. However, visual inspection 
for oral cancer may be more applicable to specialist den-
tists. Some studies have shown that general practitioners 
(GPs) often lack knowledge and awareness in diagnosing 
oral cancer, particularly in recognizing its early symp-
toms, which is a significant factor in delaying treatment 
[22]. The 5-year survival rate for oral cancer is 83% when 
detected early, compared to just 32% for patients with 
late-stage diagnosis. Therefore, early screening and diag-
nosis are crucial in reducing the incidence of oral cancer 
and improving patient survival rates.

In recent years, artificial intelligence has made signifi-
cant strides in the medical field, with its applications in 

Fig. 4 Performance metrics of the model in oral cancer detection. 4a: This curve shows the relationship between the confidence threshold and the preci-
sion of the model. The model achieved a maximum precision of 0.96 at a confidence threshold of 0.990, indicating that at this threshold, 96% of the posi-
tive predictions were correct.4b: This curve illustrates the relationship between the confidence threshold and the recall of the model. The recall reaches 
1.00 at a confidence threshold of 0.000, meaning the model correctly identified all positive samples at this threshold, but with a potential increase in false 
positives.4c: This curve displays the F1 score, which is the harmonic mean of precision and recall, across different confidence thresholds. The highest F1 
score of 0.58 was achieved at a confidence threshold of 0.010, indicating the optimal balance between precision and recall at this threshold.4d: This curve 
shows the trade-off between precision and recall. As recall increases, precision decreases, highlighting the challenge of maintaining both high precision 
and high recall simultaneously. The model’s best F1 score (0.58) represents the optimal point on this curve
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deep learning and machine learning revolutionizing 
medical diagnosis and treatment. Utilizing deep learning 
algorithms, AI can automatically interpret and analyze 
vast amounts of medical imaging data, accurately iden-
tifying diseased areas and enhancing the accuracy and 
efficiency of diagnosis [23–25]. By training on large data-
sets of imaging data, AI models can detect small lesions 
that might be overlooked by doctors, thereby reducing 
the risk of missed diagnoses and misdiagnoses [26]. Sev-
eral deep learning models have been successfully applied 
in the field of computer vision, which involves three key 
tasks: image classification, object detection, and seman-
tic segmentation. Advances in computer vision and AI 
technologies have significantly improved visual detection 
capabilities, offering new tools to assist in visual diagno-
sis and clinical data interpretation, particularly for oral 
cancer screening systems [14].

Our results show that during the algorithm model 
training phase, the Dice coefficient was approximately 

0.8, the Loss was near 0, and the IoU was around 0.7. In 
the model validation stage, the highest Dice value ranged 
between 0.4 and 0.5, which may indicate overfitting of 
our model. The Loss value increased while the training 
loss gradually decreased. The IoU value was around 0.3, 
suggesting that the model is less generalized on the vali-
dation dataset compared to the training dataset, which 
may be related to the limited size of our data. During 
the test phase, the model achieved a maximum Precision 
of 0.96 at a confidence threshold of 0.990. At the lowest 
confidence threshold of 0.000, the recall rate reached 
1.00, indicating that the model could identify almost all 
positive samples, but this might also include a large num-
ber of false positives. As an early screening model for oral 
cancer, our aim is to minimize the risk of missed diagno-
ses by increasing the recall rate. At a confidence thresh-
old of 0.010, the highest F1 score reached was 0.58.

This study offers an initial demonstration of the poten-
tial for applying artificial intelligence (AI) and deep 

Fig. 5 Comparison of true and predicted masks in oral cancer detection. Left Column (Image): Original intraoral images showing various oral 
lesions.Middle Column (True Mask): Manually annotated masks representing the actual areas of oral cancer, used as ground truth for training the AI 
model. The white areas indicate the regions identified as cancerous, while the black areas represent the background.Right Column (Predicted Mask): 
Masks predicted by the AI model. The white areas indicate the regions predicted as cancerous by the model. Blurriness in the predicted masks may result 
from the model’s interpolation process during segmentation, which attempts to smooth the boundaries to reduce noise but may also result in less pre-
cise edges.a: The predicted mask shows some differences compared to the true mask.b:The predicted mask shows some differences compared to the 
true mask, which may be due to complex or unclear boundaries within the lesion.c: Example of a more significant mismatch between the predicted and 
true masks, highlighting areas where the model’s predictions need further refinement
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learning in the diagnosis of oral cancer, but several limita-
tions must be acknowledged. Firstly, the AI system devel-
oped in this study is still in its early stages and requires 
further enhancement, particularly in its ability to identify 
occult lesions, determine optimal biopsy sites, and accu-
rately define surgical margins. Additionally, the study pri-
marily focused on more advanced and easily identifiable 
lesions ( T1-T4 stages), which limits the generalizabil-
ity of the findings to early-stage, occult lesions. Future 
research should aim to expand the dataset, improve the 
model’s effectiveness in detecting early lesions, and vali-
date the system’s performance by comparing it with other 
diagnostic methods, such as biopsy and clinical examina-
tion.Moreover, this study did not address complex differ-
ential diagnoses, such as distinguishing between severe 
hairy tongue and verrucous carcinoma, or between ero-
sive lichen planus and early squamous cell carcinoma. 
These complex diagnostic challenges are crucial in clini-
cal practice, and we plan to refine the AI system to bet-
ter handle such cases in future iterations. Additionally, 
the current technology is not designed to effectively 
define surgical margins or detect hidden lesions, both of 
which are critical challenges in oral cancer management. 
We will clearly state these limitations in the discussion.
Despite these limitations, we believe that the results of 
this study, though preliminary, provide an important 
direction for exploring the use of AI in the early screen-
ing of oral cancer. With further development and refine-
ment, this system has the potential to become a more 
reliable clinical tool, ultimately contributing to improved 
early diagnosis and treatment outcomes for patients with 
oral cancer.

In comparing our work with previous studies, such as 
Warin et al. [14], who utilized CNN-based models like 
DenseNet-169 and Faster R-CNN for OSCC and OPMD 
detection, we recognize key differences and similarities. 
Warin et al. achieved high AUCs (1.00 for OSCC and 0.98 
for OPMDs), demonstrating the effectiveness of their 
models on larger datasets. In contrast, our study, using 
a different dataset and model architecture, achieved a 
maximum Precision of 0.96 during the test phase. These 
differences underscore the variability in model perfor-
mance depending on the dataset size, type of architec-
ture, and the specific challenges posed by the dataset 
used. Furthermore, our approach using U-Net combined 
with ResNet-34 is particularly advantageous for tasks 
requiring detailed segmentation and classification within 
smaller datasets, as often encountered in clinical set-
tings. This approach, along with our specific preprocess-
ing techniques and focus on achieving high precision in 
identifying oral lesions, is crucial for reducing false posi-
tives in clinical practice. This focus on precision, com-
bined with the versatility of the U-Net architecture in 

handling complex image features, distinguishes our study 
from others.

Despite these limitations, we believe that the results 
of this study, though preliminary, provide an important 
direction for exploring the use of AI in the early screen-
ing of oral cancer. With further development and refine-
ment, this system has the potential to become a more 
reliable clinical tool, ultimately contributing to improved 
early diagnosis and treatment outcomes for patients with 
oral cancer.

Conclusion
This study provides an initial demonstration of the poten-
tial of deep learning models in identifying oral cancer. By 
increasing the dataset and incorporating more types of 
diseases (such as oral potentially malignant disorders), it 
is expected to become a useful tool to assist clinicians in 
diagnosing oral cancer.
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