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Abstract

Background Artificial intelligence (Al) methods, including machine learning and deep learning, are increasingly
applied in orthodontics for tasks like assessing skeletal maturity. Accurate timing of treatment is crucial, but traditional
methods such as cervical vertebral maturation (CVM) staging have limitations due to observer variability and com-
plexity. Al has the potential to automate CVM assessment, enhancing reliability and user-friendliness. This systematic
review and meta-analysis aimed to evaluate the overall performance of artificial intelligence (Al) models in assessing
cervical vertebrae maturation (CVM) in radiographs, when compared to clinicians.

Methods Electronic databases of Medline (via PubMed), Google Scholar, Scopus, Embase, IEEE ArXiv and MedRxiv
were searched for publications after 2010, without any limitation on language. In the present review, we included
studies that reported Al models’ performance on CVM assessment. Quality assessment was done using Quality assess-
ment and diagnostic accuracy Tool-2 (QUADAS-2). Quantitative analysis was conducted using hierarchical logistic
regression for meta-analysis on diagnostic accuracy. Subgroup analysis was conducted on different Al subsets (Deep
learning, and Machine learning).

Results A total of 1606 studies were screened of which 25 studies were included. The performance of the mod-

els was acceptable. However, it varied based on the methods employed. Eight studies had a low risk of bias in all
domains. Twelve studies were included in the meta-analysis and their pooled values for sensitivity, specificity, positive
and negative likelihood ratios, and diagnostic odds ratio (DOR) were calculated for each cervical stage (CS). The most
accurate CVM evaluation was observed for CS1, boasting a sensitivity of 0.87, a specificity of 0.97, and a DOR of 213.
Conversely, CS3 exhibited the lowest performance with a sensitivity of 0.64, and a specificity of 0.96, yet maintaining
a DOR of 32.

Conclusion Al has demonstrated encouraging outcomes in CVM assessment, achieving notable accuracy.
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Background

Artificial intelligence (AI) refers to the ability of machines
to perform tasks that typically require human intel-
ligence, such as learning, problem-solving, and deci-
sion-making [1]. Within AI, machine learning (ML)
represents a key subset, enabling systems to learn from
data and improve performance over time without explicit
programming [2]. Building on the foundation of ML,
deep learning (DL) leverages artificial neural networks
(ANN:Ss), particularly deep neural networks with multiple
layers. These layers process data in increasingly abstract
ways and enable models to automatically learn complex
patterns and representations [3]. In contrast, rule-based
Al employs explicitly defined rules crafted by human
experts to solve problems. While this approach does
not rely on data-driven insights, it demands significant
expertise and is challenging to maintain or adapt as data-
sets evolve [4]. Statistical Modeling is the process of ana-
lyzing data using statistical methods to provide insight
into the importance and relationships between inde-
pendent and dependent variables [5]. DL eliminates the
need for manual feature engineering by learning hierar-
chical representations of data through multiple layers [6].
Traditional AI methods, such as symbolic reasoning and
rule-based systems, rely on predefined rules and logical
operations to process inputs and generate outputs. These
systems are explicitly programmed by human experts
to perform specific tasks. Unlike rule-based Al, DL can
discover patterns and representations directly from data
without human intervention [3].

Deep learning has shown significant advancements in
orthodontics by automating diagnosis, treatment plan-
ning, and monitoring outcomes [7, 8]. It can be utilized
for: cephalometric landmark detection [9], diagnosis of
malocclusion and skeletal patterns [10], detection and
segmentation of teeth from dental images [11] and pre-
diction of orthodontic treatment outcomes [12].

Timing is a fundamental element of orthodontic treat-
ment. A patient’s skeletal parameters change in the sag-
ittal, transversal, and vertical planes due to growth and
development [13]. The timing of treatment onset may be
as important as selecting a specific treatment protocol.
Treatment procedures should be initiated at the appro-
priate developmental stage for the patient to achieve the
most favorable outcome with the most minor potential
morbidity [14]. As in the case of growth modification
treatment for mandible deficiency, it is recommended
that this treatment should be started before the growth
spurt [15].

Several biological indicators can be used to determine
skeletal maturity, including the height of the person
[16], the hand and wrist development [17], the erup-
tion and development of the teeth [18], menarche or the
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transformation of the voice [19], and the cervical verte-
brae maturation (CVM) [20]. In the past, radiographs
taken of the wrist were the gold standard for measuring
growth periods [13]. The use of hand-wrist radiographs
in an orthodontic practice is discouraged since it requires
additional radiographic examinations. CVM staging has
been increasing in popularity among orthodontists since
it can be assessed on lateral cephalograms required for
orthodontic diagnosis. In lateral cephalograms, CVM
is assessed based on morphological changes of the sec-
ond, third, and fourth vertebrae (C2, C3, and C4) [14, 21].
However, a suboptimal intraobserver agreement exists
with the CVM degree method [22, 23]. According to
some studies, the CVM method is not reliable or repro-
ducible since observers do not agree with the results. In
this regard, clinicians who lack technical knowledge and
experience may have difficulty using the CVM method
[24].

In addition to not being user-friendly, the CVM
method requires experienced practitioners to implement
it. The computerized cephalometric analysis does not
incorporate the conventional visual assessment of CVM
stages [25]. If we can diagnose the developmental stage
fully automatically and with few errors, we can overcome
these limitations and utilize it as a diagnostic clinical aid
in orthodontic practice.

A considerable degree of dynamic development is
observed in the field of AI in CVM assessment, result-
ing in substantial variations in methods and results
among studies. Additionally, the robustness of the body
of evidence remains uncertain. Hence, we reviewed and
appraised studies using Al (DL, ML, statistical modeling
and rule-based AI) for CVM assessment and compared
their performance measures, including accuracy, speci-
ficity, and sensitivity.

Methods

Protocol

The study protocol was registered at PROSPERO (https://
www.crd.york.ac.uk/prospero/; trial registration number:
PROSPERO CRD42022374636) and reported in accord-
ance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses of diagnostic test accuracy
(PRISMA-DTA) guidelines [26]. Specifically, the review
question was based on PICO (P=population, I=inter-
vention, C=comparison, and O=outcome): “What is
the diagnostic performance (O) of Al (I) for CVM assess-
ment via radiographs (P) compared to clinician’s diagno-
sis (C)?”

Inclusion criteria
The following inclusion criteria were utilized for selecting
the studies:
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P: Studies employed AI approaches on radiography
for CVM analysis.

I, C: Al models for classification tasks, compared
with a reference test

O: Any kind of model performance evaluation

The exclusion criteria were: Non-human studies, stud-
ies that used Al for conditions not related to the CVM,
studies that did not mention details of the study samples,
studies without a clear definition of the AI model, studies
that did not report quantitative outcomes for Al-based
CVM staging, review articles, conference papers and
studies with 5-stage classification for CVM.

Information sources and search

An electronic literature search was conducted in Decem-
ber 2024 using the following databases: Medline (via
PubMed), Google Scholar, Scopus, Embase, IEEE, ArXiv
and MedRxiv. No language restrictions were applied.
The specific search strategies utilized for each database,
along with the number of records retrieved, are detailed
in Table 1. Reference lists of eligible articles were hand-
searched to identify any relevant studies missed by the
database searches. Retrieved citations were imported
into EndNote X9 (Clarivate Analytics, Philadelphia, PA,
USA) to facilitate removal of duplicate records, study

Table 1 Search queries and results in each database
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screening, and overall management of the assembled
literature.

Selection of sources of evidence

Title and abstract screening were performed indepen-
dently by two reviewers (T.S.S, ES) against predefined
inclusion and exclusion criteria. In cases where the
information provided in the title and abstract was insuf-
ficient for making an eligibility determination, the full
text of the article was retrieved for review. Any disa-
greements between reviewers regarding study inclusion
were resolved through consensus discussion with a third
reviewer (S.S).

Data charting process and items

Two reviewers (T.S.S, SAH.O) independently completed
the data charting process using a standardized form
to extract key parameters from each included study.
Extracted items comprised: bibliographic details (name
of authors and the year of publication, data modality, data
size (train/valid/test if available), inclusion and exclusion
criteria, type of Al subset, labeling procedure, preproc-
essing procedure, augmentation, model structure, hard-
ware, performance measurement, and outcome (Table 2).
Any discrepancies in data charting between the two
reviewers were resolved through discussion and consen-
sus with a third reviewer (S.S).

Data Base Search Query

Results Date

PubMed (via Medline)

(automat* OR "Artificial Intelligence" OR "artificial intelligence"[MeSH Terms] OR "deep learning" 279

December 2024

OR "deep learning"[Mesh Terms] OR "machine learning" OR "machine learning"[MeSH Terms]
OR "convolutional neural network" OR "convolutional neural network"[MeSH Terms] OR "artificial
neural network" OR "artificial neural network"[MeSH Terms] OR "neural network" OR "computer
vision" OR "Image processing" OR "Computer-Assisted" OR CNN OR ANN OR DL OR ML OR Al)
AND ((cervical AND vertebra* AND stag®) OR "skeletal maturation")

Google Scholar

(("artificial intelligence" OR "deep learning" OR "machine learning" OR "image processing" 252

December 2024

OR "neural network" OR "convolutional neural network" OR "artificial neural network") AND ("cer-

vical vertebral") AND ("skeletal maturation"))
Embase

("artificial intelligence" OR Al OR "deep learning" OR DL OR "machine 38

December 2024

learning" OR ML OR "image processing" OR "neural network" OR NN OR " Convolutional neural

network" OR CNN) AND

"cervical vertebral" AND ("stage" OR "maturation")
ALL(("artificial intelligence" OR Al OR "deep learning" OR DL OR "machine learning" OR ML 662

Scopus

December 2024

OR "artificial neural network" OR ANN OR "convolutional neural network" OR CNN OR "image pro-
cessing" OR "neural network" OR NN) AND "cervical vertebral" AND ( "stage" OR "maturation") )

ARxiv

all="cervical vertebra" OR CVM OR "vertebral maturation" OR "cervical maturation" OR "skel- 28

December 2024

etal maturation"; AND all="artificial intelligence" OR "deep learning" OR "machine learning"
OR "artificial neural network" "computer vision" OR "convolutional neural network" OR "neural
network" OR Al OR ML OR DL OR NN OR CNN OR ANN

n

medRxiv
AND ("stage" OR "maturation")"

IEEE (automat* OR "Artificial Intelligence" OR Al OR "deep learning" OR DL OR "machine learn- 182

cervical vertebral" AND ("deep learning" OR "machine learning" OR "neural network") 165

December 2024

December 2024

ing" OR ML OR "convolutional neural network" OR CNN OR "artificial neural network" OR ANN
OR "neural network" OR NN OR "computer vision" OR "Image processing" OR Computer-Assisted)
AND ((cervical AND vertebra* AND stag*) OR "skeletal maturation" OR "bone age")
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Critical appraisal of individual sources of evidence

The Quality Assessment of Diagnostic Accuracy Stud-
ies (QUADAS-2) tool [48] was utilized independently by
2 reviewers (T.S.S, SAH.O) to evaluate the risk of bias.
It encompasses four domains: patient selection, index
test, reference standard, and flow and timing. It also
addresses applicability concerns in three areas: patient
selection, index test, and reference standard. Low risk
of bias in patient selection is linked to clear description
of patient selection methods, avoidance of inappropriate
exclusions, such as difficult-to-diagnose cases or outliers
excluded without a defined detection method, prevention
of data leakage (e.g., overlap between training and test-
ing datasets). In the index test domain, blinding of the
reference standard to the results of the index test, trans-
parent reporting of the test threshold, adequate informa-
tion on model development and test reproducibility will
lead to low risk of bias. For the reference standard, low
risk of bias arises from Use of sensitive reference stand-
ards, such as evaluation by multiple examiners or robust
diagnostic methods, blinding of the reference standard
to the index test results. The flow and timing domain
evaluates the consistency of reference standards across
samples and the intervals between index tests and refer-
ence standards. Finally, the tool assesses applicability by
evaluating how well the study, including its dataset, and
Al model addresses the research question in the context
of the intended clinical use.

Synthesis of results and meta-analysis

A hierarchical logistic regression model was utilized for
the meta-analysis of diagnostic test accuracy. Inclusion
criteria required studies to provide sufficient raw data
to extract true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) for each diagnos-
tic class under evaluation. This enabled the calculation of
pooled estimates and 95% confidence intervals for sensi-
tivity, specificity, positive likelihood ratio (LR +), negative
likelihood ratio (LR-), and diagnostic odds ratio (DOR)
across studies. Subgroup analyses were conducted for
different Al techniques and different image modalities to
quantify differences in diagnostic performance between
artificial intelligence methods. The 12 studies included
in the meta-analysis reported the values for TN, TP, FP,
and EN for each of the six CVM stages. In most of the
included studies, these metrics were presented in the
form of a confusion matrix. Studies that did not provide
complete reporting of these metrics or failed to report
metrics for all six stages were excluded from the meta-
analysis. Publication bias was evaluated through visual
inspection of Deek’s funnel plot asymmetry and Egger’s
regression test. The primary meta-analytic findings were
visualized through forest plots, hierarchical summary
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receiver operating characteristic (HSROC) curves, and
Deek’s funnel plots. All statistical analyses were executed
using the metadta, metandi, and midas commands in
STATA 16 (StataCorp LLC, College Station, TX).

The reliability and validity of the evidence from the
studies compiled in the meta-analysis, covering various
imaging techniques and tasks, were evaluated through
the Grading of Recommendations, Assessment, Develop-
ment, and Evaluation (GRADE) framework, as outlined
by the GRADE Working Group (https://www.gradeworki

nggroup.org).

Results

Study selection and characteristics

The database searches yielded 656 records, of which 31
were retrieved for full-text review following title and
abstract screening. After examining the full texts, 6 arti-
cles were excluded for reasons detailed in Supplementary
Table 1. Thus, a total of 25 studies satisfied the inclu-
sion criteria.; The number of included studies rose over
the observed period. Also, the data types diversified over
time (Fig. 1).

The included studies utilized two main image modali-
ties: cephalograms (n=22) [13, 21, 24, 25, 27, 35] and
cone beam computed tomography (CBCT) scans (n=4)
[42, 44, 45, 47], as summarized in Table 1. The major-
ity of studies (n=22) established ground truth labels via
evaluation by clinical experts. Specifically, the reference
standard was defined by one expert (n=38 studies) [13,
24, 32-34, 40, 41, 47], two experts (n=8) [25, 27, 28, 31,
35-37, 46], or three or more experts (n=>5) [29, 38, 39,
42, 44] and one study [43] did not report the number of
experts involved. Three studies employed a combination
of clinical experts and software analysis to determine
labels [35, 36, 46]. A total of 55 AI models were utilized,
with DL being the most common approach (n=19) [13,
21, 24, 25, 27-41] analysis to determine labels analy-
sis to determine labels, followed by ML (n=7) [13, 25,
33, 35, 42, 43, 46], statistical modeling (n=2) [44, 45],
and rule-based Al (n=1) [47]. Among DL technologies,
CNN s stood out as the predominant model (n=14) [21,
24, 25, 27-32, 37-41], including ResNet architectures
(n=6)[24, 25, 28, 37-39]. The most utilized ML tech-
niques were Naive Bayes [13, 33, 46], and support vec-
tor machines [13, 25, 35], each applied in three studies
and Logistic Regression applied in five studies [13, 35,
42, 44, 45]. Logistic regression models were the primary
focus in statistical modeling (n=2) [44, 45]. Augmenta-
tion techniques, such as rotation and translation, were
implemented in seven DL studies [24, 28, 31, 37-40] to
increase the size of the training data. Feature extrac-
tion, using landmark coordinate measurements, was
performed in 10 studies [13, 21, 33-35, 42—44, 46, 47].
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Fig. 1 Prisma flowchart

Additionally, the automation of region of interest (ROI)
detection was carried out in four studies [25, 29, 31, 41],
with methods like U-Net being used in two instances
[31, 41] to delineate crucial anatomical areas from the

images.

analyses (n=12)

IEEE PubMed Google Scopus Embase arXiv MedRxiv
Scholar
(n=182) (n=279) (n=252) (n=662) (n=38) (n=28) (n=165)
Records identified through
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_§ Records o
- » .
.§ identified through Duplicates removed
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2 (n=5) v
Records after duplicates
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§ »| human studies, studies
3 (n=648) that have not used Al in
their method
PR Studies excluded
g Full-text articles assessed (n=6)
® i e —
Z for eligibility (n=31) reason for exclusion:
Y 5
-2 studies had 5 and Study
‘L had 4 stage classifications,
S— Studies included in respectively (n=3)
qualitative synthesis (n=25)
o - No outcomes were reported
% about 6-stage classification in
= v one study (n=1)
\ ) Studies included in meta-

- No quantitative outcomes
for Al-based CVM staging in
one study (n=1)

- Not enough information
about model structure in one
study (n=1)

Performance metrics most reported for DL studies
included accuracy, kappa coefficient, precision, recall,
and F1 score. Additional measures such as mean absolute
error, area under the receiver operating characteristic
curve, sensitivity, and specificity were also occasionally
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utilized. The statistical modeling studies reported a wider
range of metrics encompassing agreement percent-
age, R squared, predictability, as well as some of the
aforementioned measures. The machine learning stud-
ies focused on accuracy and area under the curve, while
the single rule-based Al study used kappa coefficients
and Goodman-Kruskal gamma correlation. The detailed
description of each metric is presented in supplementary
Table 2.

Risk of bias and applicability

Quality assessment identified 8 studies [21, 27, 35, 36,
38, 39, 42, 44] as having low risk of bias and concerns
regarding applicability across all domains. The greatest
issues were found in the reference standard domain, with
13 studies [13, 24, 25, 28, 30, 32-34, 40, 41, 43, 45, 47]
deemed at high or unclear risk of bias and 17 studies [13,
24, 25, 28-34, 37, 40, 41, 43, 45-47] harboring applica-
bility concerns. Performance of the included studies for
assessed domains are summarized in Table 3.

Results of individual studies

The accuracy of DL for cephalograms varied widely from
0.57 to 0.95, the Kappa coefficient from 0.8 to 0.96, pre-
cision from 0.25-0.99, recall from 0.33-0.99, and F1
score from 0.29-1.0. The highest reported accuracy was
0.95 using ANN on 360 cephalograms [33] and the low-
est accuracy was 0.57 using CNN on 588 cephalograms
[27]. The highest reported precision was 0.99 using CNN
[33] and the lowest was 0.25 using ResNet [37]. Also, the
highest reported sensitivity, specificity, and F1 score was
100% using ANN [34].

The reported accuracy of ML ranged from 0.60 to 0.99.
The highest reported accuracy was 0.99 using Decision
tree on the 300 cephalograms [13] and the lowest was
0.60 using SVM on the 1018 cephalograms [25].

All studies conducting statistical modeling used CBCTs
[44, 45]. The reported kappa coefficient was 0.90 using
logistic regression on CBCT [44]. The reported R2 was
0.84 for females and 0.90 for males using regression mod-
els on CBCT [45].

The only study using rule-based AI was conducted on
cephalograms and CBCTs. The reported Kappa coeffi-
cient and Gamma value were 0.87 and 0.99 [47].

Synthesis of results

The meta-analysis included 12 studies (28 models/data-
sets) [13, 24, 25, 27, 29-31, 33, 37-40]. For each CS
the pooled sensitivity, specificity, diagnostic odds ratio
(DOR), positive likelihood ratio (LR+), negative likeli-
hood ratio (LR-) were computed separately. The sum-
mary points for sensitivity were based on a range of
estimates across the studies included in the analysis,
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with values ranging from 0.64 for CS3 (95% confidence
interval [CI], 0.57-0.71) to 0.87 for CS1 (95% CI, 0.81-
0.91). The pooled estimate of specificity ranged from
0.94 for CS4 (95% CI, 0.92—0.95) to 0.97 for CS1 (95% CI,
0.95-0.98).

Pooled diagnostic odds ratio (DOR) was between 32 for
CS3 (95% CI, 22-47) to 213 for CS1 (95% CI, 115-394).
Other results of the meta-analysis are summarized in
Table 4.

The plot (Fig. 2) depicted the visualization of various
elements, including the Hierarchical Summary Receiver
Operating Characteristic (HSROC) curve, prediction
region, summary point, and confidence region. The
HSROC model is a combination of sensitivity and speci-
ficity estimates from individual studies. The beta param-
eter was computed for each CS (from 1 to 6), and the
values were —0.02, —0.06, —0.15, —0.24, —0.83, and 0.68,
respectively. This indicates that there is no significant
skewness in the diagnostic odds ratio for all CSs except
for CS5 and CS6 (p <0.05).

No significant publication bias was detected across all
studies (p>0.05). In analyzing heterogeneity across the
included studies, the inconsistency index (I?) was found
to be over 97%, indicating that nearly all observed vari-
ability in outcomes is due to genuine heterogeneity. Sub-
group analysis was done for machine learning and deep
learning tasks (Table 5).

The summary points for sensitivity were based on a
range of estimates across the studies included in the anal-
ysis, with values ranging from 0.67 for CS3 (95% ClI, 0.60-
0.73) to 0.84 for CS1 (95% CI, 0.76-0.89) for deep learning
and from 0.52 for CS4 (95% CI, 0.38-0.65) to 0.93 (95%
CI, 0.86-0.97) for machine learning models. The pooled
estimate of specificity ranged from 0.94 for CS5 (95% CI,
0.92-0.95) to 0.97 for CS1 (95% CI, 0.96-0.98), and from
0.93 for CS5 (95% CI, 0.87-0.97) to 0.97 for CS2 (95% CI,
0.94-0.98). The diagnostic accuracy in deep learning and
machine learning models revealed significant heteroge-
neity (p<0.0001), with minimal impact from subgroup
analyses on sensitivity or specificity. Subgroup analyses
for different imaging modalities could not be conducted
due to limited data availability across modalities. Publi-
cation bias was assessed through Egger’s regression test
and visual inspection of Deek’s funnel plots generated
for each CS. There was no strong statistical evidence of
significant publication bias or small study effects in the
analyzed dataset (Egger’s test, p>0.05). The Deek’s funnel
plots for each CS are presented in Fig. 3.

Appraisal using the Grading of Recommendations
Assessment, Development and Evaluation (GRADE)
framework deemed the overall Certainty of Evidence for
the studies compiled in the meta-analyses to be “moder-
ate” (Table 6).
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Table 3 Quality assessment in individual studies. Green represents low risk, orange represents uncertain risk and red represents high
risk. If the risk is low in all domains, the study is at low risk of bias. A study is judged to be at risk of bias if there was unclear or high risk

in one or more domains

Risk of bias Applicability concerns
Patient Index Reference Time and Patient Index Reference
Author, Date selection test standard flow selection test standard

Atici, S. F., et al. 2023 [40]

Akay, G., et al. 2023 [27]
Radwan, M., et al. 2022 [41]
Li, H., et al. 2022 [29]

Xie, L., et al. 2022 [44]

Liao, N., et al. 2022 [38]

Li, H., et al. 2022 [39]

Zhou, J., et al. 2021 [21]

Xie, L., et al. 2021 [42]

Kim, E.-G et al. 2021 [31]

Seo, H., et al. 2021 [24]

Kok, H., et al. 2021 [33]

Kok, H., et al. 2021 [34]

Feng, X., et al. 2021 [47]
Makaremi, M., et al. 2020 [32]
Amasya, H., et al. 2020 [35]
Amasya, H., et al. 2020 [36]
Makaremi, M., et al. 2019 [30]
Kok, H., et al. 2019 [13]

Yang, Y. M., et al. 2014 [45]
Sokic, E., et al. 2012 [43]
Baptisa, R. S., et al. 2012 [46]
Atici, SF., et al. 2022 [25]
Khazaei, M., et al. 2023 [28]

Atici, S. F, et al. 2023 [40], Akay, G., et al. 2023 [27], Radwan, M., et al. 2022 [41], Li, H., et al. 2022 [29], Xie, L., et al. 2022 [44], Mohammad-rahimi, H., et al. 2022 [37], Liao,
N., etal. 2022 [38], Li, H., et al. 2022 [39], Zhou, J., et al. 2021 [21], Xie, L., et al. 2021 [42], Kim, E.-G et al. 2021 [31], Seo, H., et al. 2021 [24], Kok, H., et al. 2021 [33], Kok,
H., etal. 2021 [34], Feng, X., et al. 2021 [47], Makaremi, M., et al. 2020 [32], Amasya, H., et al. 2020 [35], Amasya, H., et al. 2020 [36], Makaremi, M., et al. 2019 [30], Kok, H.,
etal. 2019 [13], Yang, Y. M,, et al. 2014 [45], Sokic, E., et al. 2012 [43], Baptisa, R. S., et al. 2012 [46], Atici, SF, et al. 2022 [25], Khazaei, M., et al. 2023 [28]

Discussion

In the field of orthodontics, determining the optimal time
to initiate treatment is crucial for maximizing its effec-
tiveness. Failing to accurately identify and address ortho-
dontic issues at the appropriate stage may necessitate
surgical intervention later on to correct jaw deformities,

highlighting the importance of timely intervention [30,
49, 50]. The conventional technique for determining the
initiation of the orthodontics treatments is based on eval-
uating CVM. However, this approach has several limita-
tions, such as its subjective nature, which will lead to a
low intra-observer agreement, and an inability to detect
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Table 4 Summary of the meta-analysis result
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Cs1 CS2 cs3 Cs4 CS5 (&)
Se 087 0.73 0.64 0.71 0.72 0.79
(0.81,0.91) (0.65,0.79) (0.57,0.71) (0.54,0.78) (0.64,0.79) (0.75,0.83)
Sp 097 0.95 0.95 0.94 094 0.97
(0.95,0.98) (0.93,0.96) (0.93,0.96) (0.92,0.95) (0.93,0.95) (0.95,0.98)
DOR 213 50 32 38 41 106
(115,394) (28,89) (22,47) (23,63) (26, 64) (65, 174)
LR+ 283 144 12.0 116 1.9 23.0
(18.6,43.0) (9.9,20.8) (93,15.6) (8.5,15.8) (9.5,15.0) (15.3,34.6)
LR- 013 0.29 0.38 0.30 0.29 022
(0.09,0.20) (0.22,0.38) (0.31,045) (0.24,0.39) (0.22,0.39) (0.18,0.26)
Se Sensitivity, Sp Specificity, DOR Diagnostic odds ratio, LR + Positive Likelihood Ratio, LR- Negative Likelihood Ratio
Numbers in the parenthesis indicate the range for each metric by 95% Cl
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Table 5 Summary of the sub-group analysis
CS1 CS2 CS3 (Y] CS5 Ccs6
Se Deep learning 0.84 0.73 0.67 0.77 0.77 0.81
(0.76-0.89) (0.63-0.80) (0.60-0.73) (0.70-0.82) (0.70-0.83) (0.76-0.84)
Machine learning 093 0.72 0.57 0.52 0.53 0.74
(0.86-0.97) (0.56-0.85) (0.43-0.69) (0.38-0.65) (0.37-0.69) (0.66-0.82)
Sp Deep learning 0.97 0.94 0.95 0.94 0.94 097
(0.96-0.98) (0.92-0.96) (0.93-0.96) (0.92-0.96) (0.92-0.95) (0.96-0.98)
Machine learning 0.95 0.97 0.94 0.93 0.95 0.93
(0.89-0.97) (0.94-0.98) (0.90-0.96) (0.88-0.95) (0.92-0.96) (0.87-0.97)

Se Sensitivity, Sp Specificity
Numbers in the parenthesis indicate the range for each metric by 95% Cl

subtle changes. Al can address these shortcomings by
providing precise and unbiased analysis of digital images
of cervical vertebrae, minimizing the variation between
examiners, and enabling more accurate tracking of
treatment progress [24, 30]. The present study aimed to
review the role of Al in CVM assessment and how most
of the models show great promise due to their high accu-
racy in this task.

The Al models developed exhibited varying degrees
of performance across different metrics. For instance,
sensitivity ranged widely from 0.45 to 1, while specific-
ity varied from 0.75 to 1. These results suggest that, while
the models may not deliver optimal performance in the
intricate task of CVM evaluation, the outcome of Al-
based CVM staging models depends on the nature of the
applied model and can excel humans in some instances.
Previous studies showed low inter-examiner agreement
reports which were 0.50-0.74 [13, 37].

To enhance the model’s accuracy, both the input image
and the subject’s chronological age were utilized in Atici
et al. study [40]. Recognizing the divergent growth rates
between male and female patients, the dataset was segre-
gated by gender. This stratification aimed to optimize the
model’s efficiency by incorporating chronological age as
a variable. This approach is consistent with findings from
Kim et al. [51], who observed improved model accuracy
when incorporating both chronological age and gender
into the input. This methodological choice underscores
the significance of demographic factors in refining the
predictive performance of models designed for assessing
developmental stages.

Our meta-analysis demonstrated that AI models exhib-
ited superior performance in classifying CS1 compared
to other stages. This superior accuracy can be attributed
to the distinct morphology of CS1, where C1, C2, and C3
are characterized by flat lower borders. The absence of
concavities or other morphological changes in CS1 sim-
plifies its detection, making it more straightforward for
both Al models and human examiners to identify. On the

other hand, the overall performance of detecting CS3 was
lower than in other stages. This might be related to the
difficulties of detecting CS3 compared to other stages,
primarily due to its inherent morphological overlap with
adjacent stages like CS2 and CS4. This overlap can blur
the distinction between the stages, leading to potential
misclassifications. Additionally, the variability in the pro-
gression of the third vertebra from being rectangular to
square introduces further inconsistencies, making CS3 a
particularly intricate stage to identify with high precision
(14, 49].

A key distinction emerges between deep learning mod-
els designed for visual data interpretation, CNNSs, versus
those built for structured data analysis, such as ANNs
and traditional machine learning algorithms. Among
the models reviewed, 33 leveraged CNNs to process and
interpret visual data directly. In contrast, 4 studies uti-
lized ANNs for analyzing structured data, while others
employed traditional algorithms reliant on structured
inputs. CNNs streamline workflows by eliminating the
need for manual feature extraction and anatomical meas-
urements, automating the laborious processes required
by conventional methods. This automation saves clini-
cians valuable time per evaluation. Additionally, algo-
rithmic feature extraction standardizes the analytical
process, enhancing diagnostic reliability and consistency
compared to manual measurements prone to subjectiv-
ity and human error. By minimizing evaluator discrepan-
cies in assessments of skeletal maturation stages, deep
learning models like CNNs can better assist clinicians in
cervical vertebral maturation evaluations than methods
reliant on structured data inputs. Artificial Intelligence
has emerged as a transformative tool in orthodontics,
particularly in the analysis of 2D cephalograms and 3D
CBCT images. The latest deep learning methods have
enabled automated cephalometric analysis, offering pre-
cise and efficient identification of landmarks, which is
crucial for diagnosis and treatment planning [52]. Inno-
vations such as personal computer-based cephalometric
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Fig. 3 Funnel plots for assessing publication bias. The funnel plots are used to visually assess publication bias across multiple studies. Each plot
displays the log diagnostic odds ratio on the x-axis and the inverse standard error (SE) on the y-axis. The funnel plot is typically symmetrical

in the absence of bias, with higher precision studies (smaller SE) clustering near the top and lower precision studies (larger SE) scattering

toward the bottom. The open circles represent individual studies. The solid line indicates the regression line. Asymmetry in the distribution

of studies relative to the regression line may suggest publication bias. Individual Plots: Plot a, b, ¢, d, e, and f all visually show studies distributed
across the funnel. The p-value of Deeks’ Funnel Plot Asymmetry Test, indicated on each plot, provides statistical evidence for asymmetry. If p>0.05,
there is no significant asymmetry, suggesting a low likelihood of publication bias. If p < 0.05, significant asymmetry is present, indicating a potential

risk of publication bias

landmark detection utilizing online cephalograms fur-
ther enhance accessibility and accuracy in orthodontic
evaluations [53]. In 3D imaging, deep learning algorithms
facilitate multiclass CBCT image segmentation [54] and
automatic detection and segmentation of the pharyn-
geal airway, contributing to improved assessments of
airway-related orthodontic conditions [55]. Additionally,

deep learning-based integrated tooth models, combin-
ing intraoral scans and CBCT data, provide accurate 3D
evaluations of root positions during orthodontic treat-
ment, ensuring better outcomes and precise treatment
adjustments [56].

To date, two reviews have been conducted in this area,
each providing valuable insights into the application of
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Table 6 Results of grading of recommendations assessment, development and evaluation (GRADE)

Number of Study design Factors that may decrease certainty of evidence Certainty of
models/actual Evidence
cervical stages Risk of bias Indirectness Inconsistency Imprecision Publication Other

bias consideration
28 models/ Case-control  Serious® Not serious  Very serious®  Not serious  Not detected Very strong &ddO Mod-
10,865 stages association® erate

Explanations

2 Evidence was downgraded by one level. Seventeen studies had high or unclear risk of bias

b Evidence was upgraded by 2 levels. Different imaging modalities, different artificial intelligence tasks, different data curation and different age and sex groups

created inconsistency

€ Evidence was upgraded by 2 levels because of “very large” effect size (DOR > 5)

AT and neural networks in cervical vertebral maturation
(CVM) assessment. The review by Mathew et al. [57]
focused on neural networks for cervical vertebral matu-
ration (CVM) classification, reporting accuracy rang-
ing from 50% to 90%, while highlighting concerns about
bias and the need for standardized reference methods.
Kazimierczak et al. [58] examined a broader spectrum
of AI models, with accuracy ranging from 57% to 95%,
emphasizing variability in performance due to differ-
ences in models, datasets, and methodologies, and call-
ing for more robust research. Building on these, our
review includes a larger number of studies, performs a
meta-analysis, and conducts subgroup analyses based on
Al methodologies, offering a more comprehensive evalu-
ation of Al performance in CVM assessment.

The use of Al in CVM assessment holds significant
promise; however, several limitations and challenges
must be considered. To begin with, many of the stud-
ies withhold key information, as they often fail to share
their datasets or provide in-depth details about their
models. In this review, only two studies had public data-
sets [40]. On the other hand, there are two studies that
only included female patients in their datasets [42, 44].
Moreover, these studies did not share any details about
their dataset classes, for example, the number of samples
from different age or sex groups [29, 30, 32], and some
studies only shared data about age groups and no details
about sex groups [24, 27, 31, 36, 38, 41]. Sharing model
details is necessary for other researchers to reproduce
the models and make the reported accuracy and met-
rics more reliable. Crucially, this absence of information
could mask issues such as imbalanced, insufficient, or
mislabeled datasets. Such issues might adversely affect
the AI model’s performance and generalization, both of
which are heavily reliant on the quality and representa-
tiveness of the training dataset. Moreover, any errors in
the dataset’s labeling and annotation could significantly
affect the accuracy of the AI models [59]. Therefore,
expert labeling and annotation are crucial in training

the models. Unfortunately, some studies [21, 34, 42, 45,
47] have used datasets labeled by operators, examiners,
or researchers. It is rational to assume that annotations
and datasets of these studies surely had less accuracy and
reliability compared to studies that had been labeled by
experienced orthodontics. To ensure the highest possible
accuracy when using AI models for real-world decision-
making problems, it is essential that datasets are labeled
by experts, particularly in the sensitive task of CVM
assessment. Therefore, we recommend that datasets
for Al model training should be carefully curated and
labeled by a panel of experts to achieve the most reliable
performance.

Another significant limitation of utilizing Al for CVM
assessment lies in the inherent unreliability of the pre-
vailing gold standard for CVM evaluation which is highly
subjective and largely depends on the observer’s expertise
and interpretation. The nuances in the cervical vertebrae
transitions, which evolve gradually rather than abruptly,
contribute to the low interexaminer agreement [13, 37].
Often, these transitions manifest as intermediary stages,
displaying characteristics of two stages simultaneously.
This inherent overlap complicates the clinician’s task
of determining a clear cut-off for each definitive stage,
thereby reducing both the validity and reproducibility
of annotations. To address this obstacle, we recommend
that CVM annotations be cross-verified using auxiliary
methods, such as hand-wrist radiographs, to enhance the
accuracy and reliability of the assigned labels.

When utilizing Al in medicine and dentistry, it is cru-
cial to consider ethical issues to ensure patient well-
being. Informed consent is necessary, and patients should
have the option to decline the use of Al in their diagnosis
and treatment [21, 60]. Patient data must be kept secure,
confidential, and only accessible to authorized person-
nel [61]. While AI demonstrates significant promise for
clinical applications, Al systems employed in evaluating
CVM stages must undergo rigorous testing and valida-
tion. While Al can assist in diagnosis and treatment
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planning, a human clinician should always be involved,
and the Al systems should be used as a tool rather than a
replacement. Moreover, patients should also have access
to information about how the AI system works and how
it generates its predictions [62, 63].

Al technology has great potential for improving CVM
assessment. Future directions include developing more
sophisticated DL models to capture complex CVM fea-
tures and incorporating diverse datasets from different
populations and age groups. Combining AI with other
clinical factors such as dental and skeletal findings could
also improve accuracy and usefulness in clinical prac-
tice. Additionally, using public datasets and codes would
promote reproducibility, collaboration, and unbiased
data, addressing concerns about bias and ethical consid-
erations associated with Al in medical diagnosis. Overall,
these directions hold great promise for building accurate
and reliable Al models for CVM assessment.

Conclusion

The use of Al in CVM assessment has shown relatively
high accuracy and efficiency. Hence, it holds potential as
an auxiliary tool for diagnosis and pinpointing the opti-
mal initiation time for growth modification treatments in
the future. However, challenges such as the unreliability
of the accepted gold standard and the low level of agree-
ment among clinicians need to be addressed to enhance
the accuracy and reliability of AI models. In the future,
further development and standardization of Al technol-
ogy can significantly improve the accuracy and efficiency
of CVM assessment and ultimately benefit both patients
and clinicians.
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Al Artificial intelligence

CVM Cervical vertebral maturation

DOR Diagnostic odds ratio

ML Machine learning

DL Deep learning

NA Not assigned

CNN Convolutional neural network

ICC Intraclass correlation coefficient

ROI Region of interest

ANN Artificial neural network

MAE Mean Absolute Error

AUC Area under curve

WK Weighted kappa

MPR Multiplanar reformation

CBCT Cone beam computed tomography
STD Sexually transmitted diseases
QUADAS-2  Quality Assessment of Diagnostic Accuracy Studies
P True positive

N True negative

FP False positive

FN False negative

LR+ Positive likelihood ratio

LR- Negative likelihood ratio

SE Sensitivity

SP Specificity

HSROC Hierarchical summary receiver operating characteristic
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GRADE Grading of Recommendations Assessment, Development and
Evaluation

LR Logistic regression

SVM Support vector machine

RF Random forest

DT Decision tree

AUC-ROC Area Under the Receiver Operating Characteristic Curve

Po Relative observed agreement among raters

Pe Hypothetical probability of chance agreement

KNN K-nearest neighbors
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