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Abstract 

Background Artificial intelligence (AI) methods, including machine learning and deep learning, are increasingly 
applied in orthodontics for tasks like assessing skeletal maturity. Accurate timing of treatment is crucial, but traditional 
methods such as cervical vertebral maturation (CVM) staging have limitations due to observer variability and com-
plexity. AI has the potential to automate CVM assessment, enhancing reliability and user-friendliness. This systematic 
review and meta-analysis aimed to evaluate the overall performance of artificial intelligence (AI) models in assessing 
cervical vertebrae maturation (CVM) in radiographs, when compared to clinicians.

Methods Electronic databases of Medline (via PubMed), Google Scholar, Scopus, Embase, IEEE ArXiv and MedRxiv 
were searched for publications after 2010, without any limitation on language. In the present review, we included 
studies that reported AI models’ performance on CVM assessment. Quality assessment was done using Quality assess-
ment and diagnostic accuracy Tool-2 (QUADAS-2). Quantitative analysis was conducted using hierarchical logistic 
regression for meta-analysis on diagnostic accuracy. Subgroup analysis was conducted on different AI subsets (Deep 
learning, and Machine learning).

Results A total of 1606 studies were screened of which 25 studies were included. The performance of the mod-
els was acceptable. However, it varied based on the methods employed. Eight studies had a low risk of bias in all 
domains. Twelve studies were included in the meta-analysis and their pooled values for sensitivity, specificity, positive 
and negative likelihood ratios, and diagnostic odds ratio (DOR) were calculated for each cervical stage (CS). The most 
accurate CVM evaluation was observed for CS1, boasting a sensitivity of 0.87, a specificity of 0.97, and a DOR of 213. 
Conversely, CS3 exhibited the lowest performance with a sensitivity of 0.64, and a specificity of 0.96, yet maintaining 
a DOR of 32.

Conclusion AI has demonstrated encouraging outcomes in CVM assessment, achieving notable accuracy.
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Background
Artificial intelligence (AI) refers to the ability of machines 
to perform tasks that typically require human intel-
ligence, such as learning, problem-solving, and deci-
sion-making [1]. Within AI, machine learning (ML) 
represents a key subset, enabling systems to learn from 
data and improve performance over time without explicit 
programming [2]. Building on the foundation of ML, 
deep learning (DL) leverages artificial neural networks 
(ANNs), particularly deep neural networks with multiple 
layers. These layers process data in increasingly abstract 
ways and enable models to automatically learn complex 
patterns and representations [3]. In contrast, rule-based 
AI employs explicitly defined rules crafted by human 
experts to solve problems. While this approach does 
not rely on data-driven insights, it demands significant 
expertise and is challenging to maintain or adapt as data-
sets evolve [4]. Statistical Modeling is the process of ana-
lyzing data using statistical methods to provide insight 
into the importance and relationships between inde-
pendent and dependent variables [5]. DL eliminates the 
need for manual feature engineering by learning hierar-
chical representations of data through multiple layers [6]. 
Traditional AI methods, such as symbolic reasoning and 
rule-based systems, rely on predefined rules and logical 
operations to process inputs and generate outputs. These 
systems are explicitly programmed by human experts 
to perform specific tasks. Unlike rule-based AI, DL can 
discover patterns and representations directly from data 
without human intervention [3].

Deep learning has shown significant advancements in 
orthodontics by automating diagnosis, treatment plan-
ning, and monitoring outcomes [7, 8]. It can be utilized 
for: cephalometric landmark detection [9], diagnosis of 
malocclusion and skeletal patterns [10], detection and 
segmentation of teeth from dental images [11] and pre-
diction of orthodontic treatment outcomes [12].

Timing is a fundamental element of orthodontic treat-
ment. A patient’s skeletal parameters change in the sag-
ittal, transversal, and vertical planes due to growth and 
development [13]. The timing of treatment onset may be 
as important as selecting a specific treatment protocol. 
Treatment procedures should be initiated at the appro-
priate developmental stage for the patient to achieve the 
most favorable outcome with the most minor potential 
morbidity [14]. As in the case of growth modification 
treatment for mandible deficiency, it is recommended 
that this treatment should be started before the growth 
spurt [15].

Several biological indicators can be used to determine 
skeletal maturity, including the height of the person 
[16], the hand and wrist development [17], the erup-
tion and development of the teeth [18], menarche or the 

transformation of the voice [19], and the cervical verte-
brae maturation (CVM) [20]. In the past, radiographs 
taken of the wrist were the gold standard for measuring 
growth periods [13]. The use of hand-wrist radiographs 
in an orthodontic practice is discouraged since it requires 
additional radiographic examinations. CVM staging has 
been increasing in popularity among orthodontists since 
it can be assessed on lateral cephalograms required for 
orthodontic diagnosis. In lateral cephalograms, CVM 
is assessed based on morphological changes of the sec-
ond, third, and fourth vertebrae (C2, C3, and C4) [14, 21]. 
However, a suboptimal intraobserver agreement exists 
with the CVM degree method [22, 23]. According to 
some studies, the CVM method is not reliable or repro-
ducible since observers do not agree with the results. In 
this regard, clinicians who lack technical knowledge and 
experience may have difficulty using the CVM method 
[24].

In addition to not being user-friendly, the CVM 
method requires experienced practitioners to implement 
it. The computerized cephalometric analysis does not 
incorporate the conventional visual assessment of CVM 
stages [25]. If we can diagnose the developmental stage 
fully automatically and with few errors, we can overcome 
these limitations and utilize it as a diagnostic clinical aid 
in orthodontic practice.

A considerable degree of dynamic development is 
observed in the field of AI in CVM assessment, result-
ing in substantial variations in methods and results 
among studies. Additionally, the robustness of the body 
of evidence remains uncertain. Hence, we reviewed and 
appraised studies using AI (DL, ML, statistical modeling 
and rule-based AI) for CVM assessment and compared 
their performance measures, including accuracy, speci-
ficity, and sensitivity.

Methods
Protocol
The study protocol was registered at PROSPERO (https:// 
www. crd. york. ac. uk/ prosp ero/; trial registration number: 
PROSPERO CRD42022374636) and reported in accord-
ance with the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses of diagnostic test accuracy 
(PRISMA-DTA) guidelines [26]. Specifically, the review 
question was based on PICO (P = population, I = inter-
vention, C = comparison, and O = outcome): “What is 
the diagnostic performance (O) of AI (I) for CVM assess-
ment via radiographs (P) compared to clinician’s diagno-
sis (C)?”.

Inclusion criteria
The following inclusion criteria were utilized for selecting 
the studies:

https://www.crd.york.ac.uk/prospero/
https://www.crd.york.ac.uk/prospero/
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P: Studies employed AI approaches on radiography 
for CVM analysis.
I, C: AI models for classification tasks, compared 
with a reference test
O: Any kind of model performance evaluation

The exclusion criteria were: Non-human studies, stud-
ies that used AI for conditions not related to the CVM, 
studies that did not mention details of the study samples, 
studies without a clear definition of the AI model, studies 
that did not report quantitative outcomes for AI-based 
CVM staging, review articles, conference papers and 
studies with 5-stage classification for CVM.

Information sources and search
An electronic literature search was conducted in Decem-
ber 2024 using the following databases: Medline (via 
PubMed), Google Scholar, Scopus, Embase, IEEE, ArXiv 
and MedRxiv. No language restrictions were applied. 
The specific search strategies utilized for each database, 
along with the number of records retrieved, are detailed 
in Table 1. Reference lists of eligible articles were hand-
searched to identify any relevant studies missed by the 
database searches. Retrieved citations were imported 
into EndNote X9 (Clarivate Analytics, Philadelphia, PA, 
USA) to facilitate removal of duplicate records, study 

screening, and overall management of the assembled 
literature.

Selection of sources of evidence
Title and abstract screening were performed indepen-
dently by two reviewers (T.S.S, F.S) against predefined 
inclusion and exclusion criteria. In cases where the 
information provided in the title and abstract was insuf-
ficient for making an eligibility determination, the full 
text of the article was retrieved for review. Any disa-
greements between reviewers regarding study inclusion 
were resolved through consensus discussion with a third 
reviewer (S.S).

Data charting process and items
Two reviewers (T.S.S, SAH.O) independently completed 
the data charting process using a standardized form 
to extract key parameters from each included study. 
Extracted items comprised: bibliographic details (name 
of authors and the year of publication, data modality, data 
size (train/valid/test if available), inclusion and exclusion 
criteria, type of AI subset, labeling procedure, preproc-
essing procedure, augmentation, model structure, hard-
ware, performance measurement, and outcome (Table 2). 
Any discrepancies in data charting between the two 
reviewers were resolved through discussion and consen-
sus with a third reviewer (S.S).

Table 1 Search queries and results in each database

Data Base Search Query Results Date

PubMed (via Medline) (automat* OR "Artificial Intelligence" OR "artificial intelligence"[MeSH Terms] OR "deep learning" 
OR "deep learning"[Mesh Terms] OR "machine learning" OR "machine learning"[MeSH Terms] 
OR "convolutional neural network" OR "convolutional neural network"[MeSH Terms] OR "artificial 
neural network" OR "artificial neural network"[MeSH Terms] OR "neural network" OR "computer 
vision" OR "Image processing" OR "Computer-Assisted" OR CNN OR ANN OR DL OR ML OR AI) 
AND ((cervical AND vertebra* AND stag*) OR "skeletal maturation")

279 December 2024

Google Scholar (("artificial intelligence" OR "deep learning" OR "machine learning" OR "image processing" 
OR "neural network" OR "convolutional neural network" OR "artificial neural network") AND ("cer-
vical vertebral") AND ("skeletal maturation"))

252 December 2024

Embase ("artificial intelligence" OR AI OR "deep learning" OR DL OR "machine
learning" OR ML OR "image processing" OR "neural network" OR NN OR " Convolutional neural 
network" OR CNN) AND
"cervical vertebral" AND ("stage" OR "maturation")

38 December 2024

Scopus ALL( ( "artificial intelligence" OR AI OR "deep learning" OR DL OR "machine learning" OR ML 
OR "artificial neural network" OR ANN OR "convolutional neural network" OR CNN OR "image pro-
cessing" OR "neural network" OR NN) AND "cervical vertebral" AND ( "stage" OR "maturation" ) )

662 December 2024

ARxiv  all="cervical vertebra" OR CVM OR "vertebral maturation" OR "cervical maturation" OR "skel-
etal maturation"; AND all="artificial intelligence" OR "deep learning" OR "machine learning" 
OR "artificial neural network" "computer vision" OR "convolutional neural network" OR "neural 
network" OR AI OR ML OR DL OR NN OR CNN OR ANN

28 December 2024

medRxiv ""cervical vertebral" AND ("deep learning" OR "machine learning" OR "neural network") 
AND ("stage" OR "maturation")"

165 December 2024

IEEE (automat* OR "Artificial Intelligence" OR AI OR "deep learning" OR DL OR "machine learn-
ing" OR ML OR "convolutional neural network" OR CNN OR "artificial neural network" OR ANN 
OR "neural network" OR NN OR "computer vision" OR "Image processing" OR Computer-Assisted) 
AND ((cervical AND vertebra* AND stag*) OR "skeletal maturation" OR "bone age")

182 December 2024
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Critical appraisal of individual sources of evidence
The Quality Assessment of Diagnostic Accuracy Stud-
ies (QUADAS-2) tool [48] was utilized independently by 
2 reviewers (T.S.S, SAH.O) to evaluate the risk of bias. 
It encompasses four domains: patient selection, index 
test, reference standard, and flow and timing. It also 
addresses applicability concerns in three areas: patient 
selection, index test, and reference standard. Low risk 
of bias in patient selection is linked to clear description 
of patient selection methods, avoidance of inappropriate 
exclusions, such as difficult-to-diagnose cases or outliers 
excluded without a defined detection method, prevention 
of data leakage (e.g., overlap between training and test-
ing datasets). In the index test domain, blinding of the 
reference standard to the results of the index test, trans-
parent reporting of the test threshold, adequate informa-
tion on model development and test reproducibility will 
lead to low risk of bias. For the reference standard, low 
risk of bias arises from Use of sensitive reference stand-
ards, such as evaluation by multiple examiners or robust 
diagnostic methods, blinding of the reference standard 
to the index test results. The flow and timing domain 
evaluates the consistency of reference standards across 
samples and the intervals between index tests and refer-
ence standards. Finally, the tool assesses applicability by 
evaluating how well the study, including its dataset, and 
AI model addresses the research question in the context 
of the intended clinical use.

Synthesis of results and meta-analysis
A hierarchical logistic regression model was utilized for 
the meta-analysis of diagnostic test accuracy. Inclusion 
criteria required studies to provide sufficient raw data 
to extract true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN) for each diagnos-
tic class under evaluation. This enabled the calculation of 
pooled estimates and 95% confidence intervals for sensi-
tivity, specificity, positive likelihood ratio (LR +), negative 
likelihood ratio (LR-), and diagnostic odds ratio (DOR) 
across studies. Subgroup analyses were conducted for 
different AI techniques and different image modalities to 
quantify differences in diagnostic performance between 
artificial intelligence methods. The 12 studies included 
in the meta-analysis reported the values for TN, TP, FP, 
and FN for each of the six CVM stages. In most of the 
included studies, these metrics were presented in the 
form of a confusion matrix. Studies that did not provide 
complete reporting of these metrics or failed to report 
metrics for all six stages were excluded from the meta-
analysis. Publication bias was evaluated through visual 
inspection of Deek’s funnel plot asymmetry and Egger’s 
regression test. The primary meta-analytic findings were 
visualized through forest plots, hierarchical summary 

receiver operating characteristic (HSROC) curves, and 
Deek’s funnel plots. All statistical analyses were executed 
using the metadta, metandi, and midas commands in 
STATA 16 (StataCorp LLC, College Station, TX).

The reliability and validity of the evidence from the 
studies compiled in the meta-analysis, covering various 
imaging techniques and tasks, were evaluated through 
the Grading of Recommendations, Assessment, Develop-
ment, and Evaluation (GRADE) framework, as outlined 
by the GRADE Working Group (https:// www. grade worki 
nggro up. org).

Results
Study selection and characteristics
The database searches yielded 656 records, of which 31 
were retrieved for full-text review following title and 
abstract screening. After examining the full texts, 6 arti-
cles were excluded for reasons detailed in Supplementary 
Table  1. Thus, a total of 25 studies satisfied the inclu-
sion criteria.; The number of included studies rose over 
the observed period. Also, the data types diversified over 
time (Fig. 1).

The included studies utilized two main image modali-
ties: cephalograms (n = 22) [13, 21, 24, 25, 27, 35] and 
cone beam computed tomography (CBCT) scans (n = 4) 
[42, 44, 45, 47], as summarized in Table  1. The major-
ity of studies (n = 22) established ground truth labels via 
evaluation by clinical experts. Specifically, the reference 
standard was defined by one expert (n = 8 studies) [13, 
24, 32–34, 40, 41, 47], two experts (n = 8) [25, 27, 28, 31, 
35–37, 46], or three or more experts (n = 5) [29, 38, 39, 
42, 44] and one study [43] did not report the number of 
experts involved. Three studies employed a combination 
of clinical experts and software analysis to determine 
labels [35, 36, 46]. A total of 55 AI models were utilized, 
with DL being the most common approach (n = 19) [13, 
21, 24, 25, 27–41] analysis to determine labels analy-
sis to determine labels, followed by ML (n = 7) [13, 25, 
33, 35, 42, 43, 46], statistical modeling (n = 2) [44, 45], 
and rule-based AI (n = 1) [47]. Among DL technologies, 
CNNs stood out as the predominant model (n = 14) [21, 
24, 25, 27–32, 37–41], including ResNet architectures 
(n = 6)[24, 25, 28, 37–39]. The most utilized ML tech-
niques were Naïve Bayes [13, 33, 46], and support vec-
tor machines [13, 25, 35], each applied in three studies 
and Logistic Regression applied in five studies [13, 35, 
42, 44, 45]. Logistic regression models were the primary 
focus in statistical modeling (n = 2) [44, 45]. Augmenta-
tion techniques, such as rotation and translation, were 
implemented in seven DL studies [24, 28, 31, 37–40] to 
increase the size of the training data. Feature extrac-
tion, using landmark coordinate measurements, was 
performed in 10 studies [13, 21, 33–35, 42–44, 46, 47]. 

https://www.gradeworkinggroup.org
https://www.gradeworkinggroup.org
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Additionally, the automation of region of interest (ROI) 
detection was carried out in four studies [25, 29, 31, 41], 
with methods like U-Net being used in two instances 
[31, 41] to delineate crucial anatomical areas from the 
images.

Performance metrics most reported for DL studies 
included accuracy, kappa coefficient, precision, recall, 
and F1 score. Additional measures such as mean absolute 
error, area under the receiver operating characteristic 
curve, sensitivity, and specificity were also occasionally 

Fig. 1 Prisma flowchart
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utilized. The statistical modeling studies reported a wider 
range of metrics encompassing agreement percent-
age, R squared, predictability, as well as some of the 
aforementioned measures. The machine learning stud-
ies focused on accuracy and area under the curve, while 
the single rule-based AI study used kappa coefficients 
and Goodman-Kruskal gamma correlation. The detailed 
description of each metric is presented in supplementary 
Table 2.

Risk of bias and applicability
Quality assessment identified 8 studies [21, 27, 35, 36, 
38, 39, 42, 44] as having low risk of bias and concerns 
regarding applicability across all domains. The greatest 
issues were found in the reference standard domain, with 
13 studies [13, 24, 25, 28, 30, 32–34, 40, 41, 43, 45, 47] 
deemed at high or unclear risk of bias and 17 studies [13, 
24, 25, 28–34, 37, 40, 41, 43, 45–47] harboring applica-
bility concerns. Performance of the included studies for 
assessed domains are summarized in Table 3.

Results of individual studies
The accuracy of DL for cephalograms varied widely from 
0.57 to 0.95, the Kappa coefficient from 0.8 to 0.96, pre-
cision from 0.25-0.99, recall from 0.33-0.99, and F1 
score from 0.29-1.0. The highest reported accuracy was 
0.95 using ANN on 360 cephalograms [33] and the low-
est accuracy was 0.57 using CNN on 588 cephalograms 
[27]. The highest reported precision was 0.99 using CNN 
[33] and the lowest was 0.25 using ResNet [37]. Also, the 
highest reported sensitivity, specificity, and F1 score was 
100% using ANN [34].

The reported accuracy of ML ranged from 0.60 to 0.99. 
The highest reported accuracy was 0.99 using Decision 
tree on the 300 cephalograms [13] and the lowest was 
0.60 using SVM on the 1018 cephalograms [25].

All studies conducting statistical modeling used CBCTs 
[44, 45]. The reported kappa coefficient was 0.90 using 
logistic regression on CBCT [44]. The reported R2 was 
0.84 for females and 0.90 for males using regression mod-
els on CBCT [45].

The only study using rule-based AI was conducted on 
cephalograms and CBCTs. The reported Kappa coeffi-
cient and Gamma value were 0.87 and 0.99 [47].

Synthesis of results
The meta-analysis included 12 studies (28 models/data-
sets) [13, 24, 25, 27, 29–31, 33, 37–40]. For each CS 
the pooled sensitivity, specificity, diagnostic odds ratio 
(DOR), positive likelihood ratio (LR +), negative likeli-
hood ratio (LR-) were computed separately. The sum-
mary points for sensitivity were based on a range of 
estimates across the studies included in the analysis, 

with values ranging from 0.64 for CS3 (95% confidence 
interval [CI], 0.57–0.71) to 0.87 for CS1 (95% CI, 0.81–
0.91). The pooled estimate of specificity ranged from 
0.94 for CS4 (95% CI, 0.92–0.95) to 0.97 for CS1 (95% CI, 
0.95–0.98).

Pooled diagnostic odds ratio (DOR) was between 32 for 
CS3 (95% CI, 22-47) to 213 for CS1 (95% CI, 115-394). 
Other results of the meta-analysis are summarized in 
Table 4.

The plot (Fig.  2) depicted the visualization of various 
elements, including the Hierarchical Summary Receiver 
Operating Characteristic (HSROC) curve, prediction 
region, summary point, and confidence region. The 
HSROC model is a combination of sensitivity and speci-
ficity estimates from individual studies. The beta param-
eter was computed for each CS (from 1 to 6), and the 
values were −0.02, −0.06, −0.15, −0.24, −0.83, and 0.68, 
respectively. This indicates that there is no significant 
skewness in the diagnostic odds ratio for all CSs except 
for CS5 and CS6 (p < 0.05).

No significant publication bias was detected across all 
studies (p > 0.05). In analyzing heterogeneity across the 
included studies, the inconsistency index  (I2) was found 
to be over 97%, indicating that nearly all observed vari-
ability in outcomes is due to genuine heterogeneity. Sub-
group analysis was done for machine learning and deep 
learning tasks (Table 5).

The summary points for sensitivity were based on a 
range of estimates across the studies included in the anal-
ysis, with values ranging from 0.67 for CS3 (95% CI, 0.60-
0.73) to 0.84 for CS1 (95% CI, 0.76-0.89) for deep learning 
and from 0.52 for CS4 (95% CI, 0.38-0.65) to 0.93 (95% 
CI, 0.86-0.97) for machine learning models. The pooled 
estimate of specificity ranged from 0.94 for CS5 (95% CI, 
0.92-0.95) to 0.97 for CS1 (95% CI, 0.96-0.98), and from 
0.93 for CS5 (95% CI, 0.87-0.97) to 0.97 for CS2 (95% CI, 
0.94-0.98). The diagnostic accuracy in deep learning and 
machine learning models revealed significant heteroge-
neity (p < 0.0001), with minimal impact from subgroup 
analyses on sensitivity or specificity. Subgroup analyses 
for different imaging modalities could not be conducted 
due to limited data availability across modalities. Publi-
cation bias was assessed through Egger’s regression test 
and visual inspection of Deek’s funnel plots generated 
for each CS. There was no strong statistical evidence of 
significant publication bias or small study effects in the 
analyzed dataset (Egger’s test, p > 0.05). The Deek’s funnel 
plots for each CS are presented in Fig. 3.

Appraisal using the Grading of Recommendations 
Assessment, Development and Evaluation (GRADE) 
framework deemed the overall Certainty of Evidence for 
the studies compiled in the meta-analyses to be “moder-
ate” (Table 6).
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Discussion
In the field of orthodontics, determining the optimal time 
to initiate treatment is crucial for maximizing its effec-
tiveness. Failing to accurately identify and address ortho-
dontic issues at the appropriate stage may necessitate 
surgical intervention later on to correct jaw deformities, 

highlighting the importance of timely intervention [30, 
49, 50]. The conventional technique for determining the 
initiation of the orthodontics treatments is based on eval-
uating CVM. However, this approach has several limita-
tions, such as its subjective nature, which will lead to a 
low intra-observer agreement, and an inability to detect 

Table 3 Quality assessment in individual studies. Green represents low risk, orange represents uncertain risk and red represents high 
risk. If the risk is low in all domains, the study is at low risk of bias. A study is judged to be at risk of bias if there was unclear or high risk 
in one or more domains

Atici, S. F., et al. 2023 [40], Akay, G., et al. 2023 [27], Radwan, M., et al. 2022 [41], Li, H., et al. 2022 [29], Xie, L., et al. 2022 [44], Mohammad-rahimi, H., et al. 2022 [37], Liao, 
N., et al. 2022 [38], Li, H., et al. 2022 [39], Zhou, J., et al. 2021 [21], Xie, L., et al. 2021 [42], Kim, E.-G et al. 2021 [31], Seo, H., et al. 2021 [24], Kok, H., et al. 2021 [33], Kok, 
H., et al. 2021 [34], Feng, X., et al. 2021 [47], Makaremi, M., et al. 2020 [32], Amasya, H., et al. 2020 [35], Amasya, H., et al. 2020 [36], Makaremi, M., et al. 2019 [30], Kok, H., 
et al. 2019 [13], Yang, Y. M., et al. 2014 [45], Sokic, E., et al. 2012 [43], Baptisa, R. S., et al. 2012 [46], Atici, SF., et al. 2022 [25], Khazaei, M., et al. 2023 [28]
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Table 4 Summary of the meta-analysis result

Se Sensitivity, Sp Specificity, DOR Diagnostic odds ratio, LR + Positive Likelihood Ratio, LR- Negative Likelihood Ratio

Numbers in the parenthesis indicate the range for each metric by 95% CI

CS1 CS2 CS3 CS4 CS5 CS6

Se  0.87
(0.81, 0.91)

0.73
(0.65, 0.79)

0.64
(0.57, 0.71)

0.71
(0.54, 0.78)

0.72
(0.64, 0.79)

0.79
(0.75, 0.83)

Sp  0.97
(0.95, 0.98)

0.95
(0.93, 0.96)

0.95
(0.93, 0.96)

0.94
(0.92, 0.95)

0.94
(0.93, 0.95)

0.97
(0.95, 0.98)

DOR  213
(115, 394)

50
(28, 89)

32
(22, 47)

38
(23, 63)

41
(26, 64)

106
(65, 174)

LR + 28.3
(18.6, 43.0)

14.4
(9.9, 20.8)

12.0
(9.3, 15.6)

11.6
(8.5, 15.8)

11.9
(9.5, 15.0)

23.0
(15.3, 34.6)

LR-  0.13
(0.09, 0.20)

0.29
(0.22, 0.38)

0.38
(0.31, 0.45)

0.30
(0.24, 0.39)

0.29
(0.22, 0.39)

0.22
(0.18, 0.26)

Fig. 2 Results of meta-analysis on Sensitivity and Specificity of the deep learning models for assessment of CVM, and the Hierarchical Summary 
Receiver Operating Characteristic (HSROC) curve. Each “study estimate” is shown as a data point, representing sensitivity, specificity, and sample size. 
The "Summary point" displays the pooled sensitivity and specificity from all studies. The "95% confidence region" indicates the expected location 
of the pooled summary point with 95% certainty, while the "95% prediction region" forecasts sensitivity and specificity ranges for future studies. 
Pictures “a” to “f” refer to CS1 to CS6 respectively. The beta parameter was significant in CS5(p = 0.013) and CS6(p = 0.016) showing heterogenicity 
among included studies for these stages
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subtle changes. AI can address these shortcomings by 
providing precise and unbiased analysis of digital images 
of cervical vertebrae, minimizing the variation between 
examiners, and enabling more accurate tracking of 
treatment progress [24, 30]. The present study aimed to 
review the role of AI in CVM assessment and how most 
of the models show great promise due to their high accu-
racy in this task.

The AI models developed exhibited varying degrees 
of performance across different metrics. For instance, 
sensitivity ranged widely from 0.45 to 1, while specific-
ity varied from 0.75 to 1. These results suggest that, while 
the models may not deliver optimal performance in the 
intricate task of CVM evaluation, the outcome of AI-
based CVM staging models depends on the nature of the 
applied model and can excel humans in some instances. 
Previous studies showed low inter-examiner agreement 
reports which were 0.50-0.74 [13, 37].

To enhance the model’s accuracy, both the input image 
and the subject’s chronological age were utilized in Atici 
et al. study [40]. Recognizing the divergent growth rates 
between male and female patients, the dataset was segre-
gated by gender. This stratification aimed to optimize the 
model’s efficiency by incorporating chronological age as 
a variable. This approach is consistent with findings from 
Kim et al. [51], who observed improved model accuracy 
when incorporating both chronological age and gender 
into the input. This methodological choice underscores 
the significance of demographic factors in refining the 
predictive performance of models designed for assessing 
developmental stages.

Our meta-analysis demonstrated that AI models exhib-
ited superior performance in classifying CS1 compared 
to other stages. This superior accuracy can be attributed 
to the distinct morphology of CS1, where C1, C2, and C3 
are characterized by flat lower borders. The absence of 
concavities or other morphological changes in CS1 sim-
plifies its detection, making it more straightforward for 
both AI models and human examiners to identify. On the 

other hand, the overall performance of detecting CS3 was 
lower than in other stages. This might be related to the 
difficulties of detecting CS3 compared to other stages, 
primarily due to its inherent morphological overlap with 
adjacent stages like CS2 and CS4. This overlap can blur 
the distinction between the stages, leading to potential 
misclassifications. Additionally, the variability in the pro-
gression of the third vertebra from being rectangular to 
square introduces further inconsistencies, making CS3 a 
particularly intricate stage to identify with high precision 
[14, 49].

A key distinction emerges between deep learning mod-
els designed for visual data interpretation, CNNs, versus 
those built for structured data analysis, such as ANNs 
and traditional machine learning algorithms. Among 
the models reviewed, 33 leveraged CNNs to process and 
interpret visual data directly. In contrast, 4 studies uti-
lized ANNs for analyzing structured data, while others 
employed traditional algorithms reliant on structured 
inputs. CNNs streamline workflows by eliminating the 
need for manual feature extraction and anatomical meas-
urements, automating the laborious processes required 
by conventional methods. This automation saves clini-
cians valuable time per evaluation. Additionally, algo-
rithmic feature extraction standardizes the analytical 
process, enhancing diagnostic reliability and consistency 
compared to manual measurements prone to subjectiv-
ity and human error. By minimizing evaluator discrepan-
cies in assessments of skeletal maturation stages, deep 
learning models like CNNs can better assist clinicians in 
cervical vertebral maturation evaluations than methods 
reliant on structured data inputs.  Artificial Intelligence 
has emerged as a transformative tool in orthodontics, 
particularly in the analysis of 2D cephalograms and 3D 
CBCT images. The latest deep learning methods have 
enabled automated cephalometric analysis, offering pre-
cise and efficient identification of landmarks, which is 
crucial for diagnosis and treatment planning [52]. Inno-
vations such as personal computer-based cephalometric 

Table 5 Summary of the sub-group analysis

Se Sensitivity, Sp Specificity

Numbers in the parenthesis indicate the range for each metric by 95% CI

CS1 CS2 CS3 CS4 CS5 CS6

Se  Deep learning 0.84
(0.76–0.89)

0.73
(0.63–0.80)

0.67
(0.60–0.73)

0.77
(0.70–0.82)

0.77
(0.70–0.83)

0.81
(0.76–0.84)

Machine learning 0.93
(0.86–0.97)

0.72
(0.56–0.85)

0.57
(0.43–0.69)

0.52
(0.38–0.65)

0.53
(0.37–0.69)

0.74
(0.66–0.82)

Sp  Deep learning 0.97
(0.96–0.98)

0.94
(0.92–0.96)

0.95
(0.93–0.96)

0.94
(0.92–0.96)

0.94
(0.92–0.95)

0.97
(0.96–0.98)

Machine learning 0.95
(0.89–0.97)

0.97
(0.94–0.98)

0.94
(0.90–0.96)

0.93
(0.88–0.95)

0.95
(0.92–0.96)

0.93
(0.87–0.97)



Page 17 of 21Sadeghi et al. BMC Oral Health          (2025) 25:187  

landmark detection utilizing online cephalograms fur-
ther enhance accessibility and accuracy in orthodontic 
evaluations [53]. In 3D imaging, deep learning algorithms 
facilitate multiclass CBCT image segmentation [54] and 
automatic detection and segmentation of the pharyn-
geal airway, contributing to improved assessments of 
airway-related orthodontic conditions [55]. Additionally, 

deep learning-based integrated tooth models, combin-
ing intraoral scans and CBCT data, provide accurate 3D 
evaluations of root positions during orthodontic treat-
ment, ensuring better outcomes and precise treatment 
adjustments [56].

To date, two reviews have been conducted in this area, 
each providing valuable insights into the application of 

Fig. 3 Funnel plots for assessing publication bias. The funnel plots are used to visually assess publication bias across multiple studies. Each plot 
displays the log diagnostic odds ratio on the x-axis and the inverse standard error (SE) on the y-axis. The funnel plot is typically symmetrical 
in the absence of bias, with higher precision studies (smaller SE) clustering near the top and lower precision studies (larger SE) scattering 
toward the bottom. The open circles represent individual studies. The solid line indicates the regression line. Asymmetry in the distribution 
of studies relative to the regression line may suggest publication bias. Individual Plots: Plot a, b, c, d, e, and f all visually show studies distributed 
across the funnel. The p-value of Deeks’ Funnel Plot Asymmetry Test, indicated on each plot, provides statistical evidence for asymmetry. If p > 0.05, 
there is no significant asymmetry, suggesting a low likelihood of publication bias. If p < 0.05, significant asymmetry is present, indicating a potential 
risk of publication bias
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AI and neural networks in cervical vertebral maturation 
(CVM) assessment. The review by Mathew et  al. [57] 
focused on neural networks for cervical vertebral matu-
ration (CVM) classification, reporting accuracy rang-
ing from 50% to 90%, while highlighting concerns about 
bias and the need for standardized reference methods. 
Kazimierczak et  al. [58] examined a broader spectrum 
of AI models, with accuracy ranging from 57% to 95%, 
emphasizing variability in performance due to differ-
ences in models, datasets, and methodologies, and call-
ing for more robust research. Building on these, our 
review includes a larger number of studies, performs a 
meta-analysis, and conducts subgroup analyses based on 
AI methodologies, offering a more comprehensive evalu-
ation of AI performance in CVM assessment.

The use of AI in CVM assessment holds significant 
promise; however, several limitations and challenges 
must be considered. To begin with, many of the stud-
ies withhold key information, as they often fail to share 
their datasets or provide in-depth details about their 
models. In this review, only two studies had public data-
sets [40]. On the other hand, there are two studies that 
only included female patients in their datasets [42, 44]. 
Moreover, these studies did not share any details about 
their dataset classes, for example, the number of samples 
from different age or sex groups [29, 30, 32], and some 
studies only shared data about age groups and no details 
about sex groups [24, 27, 31, 36, 38, 41]. Sharing model 
details is necessary for other researchers to reproduce 
the models and make the reported accuracy and met-
rics more reliable. Crucially, this absence of information 
could mask issues such as imbalanced, insufficient, or 
mislabeled datasets. Such issues might adversely affect 
the AI model’s performance and generalization, both of 
which are heavily reliant on the quality and representa-
tiveness of the training dataset. Moreover, any errors in 
the dataset’s labeling and annotation could significantly 
affect the accuracy of the AI models [59]. Therefore, 
expert labeling and annotation are crucial in training 

the models. Unfortunately, some studies [21, 34, 42, 45, 
47] have used datasets labeled by operators, examiners, 
or researchers. It is rational to assume that annotations 
and datasets of these studies surely had less accuracy and 
reliability compared to studies that had been labeled by 
experienced orthodontics. To ensure the highest possible 
accuracy when using AI models for real-world decision-
making problems, it is essential that datasets are labeled 
by experts, particularly in the sensitive task of CVM 
assessment. Therefore, we recommend that datasets 
for AI model training should be carefully curated and 
labeled by a panel of experts to achieve the most reliable 
performance.

Another significant limitation of utilizing AI for CVM 
assessment lies in the inherent unreliability of the pre-
vailing gold standard for CVM evaluation which is highly 
subjective and largely depends on the observer’s expertise 
and interpretation. The nuances in the cervical vertebrae 
transitions, which evolve gradually rather than abruptly, 
contribute to the low interexaminer agreement [13, 37]. 
Often, these transitions manifest as intermediary stages, 
displaying characteristics of two stages simultaneously. 
This inherent overlap complicates the clinician’s task 
of determining a clear cut-off for each definitive stage, 
thereby reducing both the validity and reproducibility 
of annotations. To address this obstacle, we recommend 
that CVM annotations be cross-verified using auxiliary 
methods, such as hand-wrist radiographs, to enhance the 
accuracy and reliability of the assigned labels.

When utilizing AI in medicine and dentistry, it is cru-
cial to consider ethical issues to ensure patient well-
being. Informed consent is necessary, and patients should 
have the option to decline the use of AI in their diagnosis 
and treatment [21, 60]. Patient data must be kept secure, 
confidential, and only accessible to authorized person-
nel [61]. While AI demonstrates significant promise for 
clinical applications, AI systems employed in evaluating 
CVM stages must undergo rigorous testing and valida-
tion. While AI can assist in diagnosis and treatment 

Table 6 Results of grading of recommendations assessment, development and evaluation (GRADE)

Explanations
a Evidence was downgraded by one level. Seventeen studies had high or unclear risk of bias
b Evidence was upgraded by 2 levels. Different imaging modalities, different artificial intelligence tasks, different data curation and different age and sex groups 
created inconsistency
c Evidence was upgraded by 2 levels because of “very large” effect size (DOR > 5)

Number of 
models/actual 
cervical stages

Study design Factors that may decrease certainty of evidence Certainty of 
Evidence

Risk of bias Indirectness Inconsistency Imprecision Publication 
bias

Other 
consideration

28 models/ 
10,865 stages

Case–control Seriousa Not serious Very  seriousb Not serious Not detected Very strong 
 associationc

⨁⨁⨁◯ Mod-
erate
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planning, a human clinician should always be involved, 
and the AI systems should be used as a tool rather than a 
replacement. Moreover, patients should also have access 
to information about how the AI system works and how 
it generates its predictions [62, 63].

AI technology has great potential for improving CVM 
assessment. Future directions include developing more 
sophisticated DL models to capture complex CVM fea-
tures and incorporating diverse datasets from different 
populations and age groups. Combining AI with other 
clinical factors such as dental and skeletal findings could 
also improve accuracy and usefulness in clinical prac-
tice. Additionally, using public datasets and codes would 
promote reproducibility, collaboration, and unbiased 
data, addressing concerns about bias and ethical consid-
erations associated with AI in medical diagnosis. Overall, 
these directions hold great promise for building accurate 
and reliable AI models for CVM assessment.

Conclusion
The use of AI in CVM assessment has shown relatively 
high accuracy and efficiency. Hence, it holds potential as 
an auxiliary tool for diagnosis and pinpointing the opti-
mal initiation time for growth modification treatments in 
the future. However, challenges such as the unreliability 
of the accepted gold standard and the low level of agree-
ment among clinicians need to be addressed to enhance 
the accuracy and reliability of AI models. In the future, 
further development and standardization of AI technol-
ogy can significantly improve the accuracy and efficiency 
of CVM assessment and ultimately benefit both patients 
and clinicians.
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HSROC  Hierarchical summary receiver operating characteristic

GRADE  Grading of Recommendations Assessment, Development and 
Evaluation

LR  Logistic regression
SVM  Support vector machine
RF  Random forest
DT  Decision tree
AUC-ROC  Area Under the Receiver Operating Characteristic Curve
p0   Relative observed agreement among raters
pe   Hypothetical probability of chance agreement
KNN  K-nearest neighbors
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