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Abstract 

Background The aim was to fully automate molar teeth developmental staging and to comprehensively analyze 
a wide range of deep learning models’ performances for molar tooth germ detection on panoramic radiographs.

Methods The dataset consisted of 210 panoramic radiographies. The data were obtained from patients aged 
between 5 and 25 years. The stages of development of molar teeth were divided into 4 classes such as M1, M2, 
M3 and M4. 9 different convolutional neural network models, which were Cascade R-CNN, YOLOv3, Hybrid Task 
Cascade(HTC), DetectorRS, SSD, EfficientNet, NAS-FPN, Deformable DETR and Probabilistic Anchor Assignment(PAA), 
were used for automatic detection of these classes. Performances were evaluated by mAP for detection localization 
performance and confusion matrices, giving metrics of accuracy, precision, recall and F1-scores for classification part.

Results Localization performance of the models varied between 0.70 and 0.86 while average accuracy for all classes 
was between 0.71 and 0.82. The Deformable DETR model provided the best performance with mAP, accuracy, recall 
and F1-score as 0.86, 0.82, 0.86 and 0.86 respectively.

Conclusions Molar teeth were automatically detected and categorized by modern artificial intelligence techniques. 
Findings demonstrated that detection and classification ability of deep learning models were promising for molar 
teeth development staging. Automated systems have a potential to alleviate the burden and assist dentists.

Trial registration This is retrospectively registered with the number 2023–1216 by the university ethical committee.

Keywords Tooth germ, Detection, Staging, Artificial intelligence, Deep learning, Panoramic, Dentistry

Background
In the evaluation of growth and development in chil-
dren, the morphology of oral structures, especially the 
development of permanent tooth germs, are observed as 
maturation indicators [1]. Timely identification of these 
structures not only helps to assess dental age and growth, 

but also provides an important basis for individualized 
treatment planning [2]. The developmental stages of 
tooth germs can be evaluated from panoramic radio-
graphs or calculated from the eruption age by intraoral 
examination of permanent teeth [3]. Evaluation of per-
manent tooth germs in developmental staging is fre-
quently used in tooth age estimation because it can be 
applied in a wide age range and is less affected by envi-
ronmental factors [4].

Age estimation also becomes very important in foren-
sic medicine when the patient’s real age cannot be 
proven, and identification information is not available 
[5]. In dental age estimation, the manual estimation of 
developmental stages is disadvantageous due to the vari-
ability in the classification of observers [6]. The use of 
automatic age classification methods has been proposed 
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in recent years to reduce the variability in stages [7]. In a 
pilot study on automated staging of third molar germs for 
tooth age estimation, De tobel et al. reported an overall 
performance similar to that of staging by human observ-
ers [8].

Deep learning methods, particularly convolutional 
neural networks (CNNs), have demonstrated remark-
able capabilities in pattern recognition, enabling the 
automated identification, localization, and segmentation 
of a wide range of cases in dentistry [9–16]. Further-
more, deep learning algorithms can adapt to variations 
in image acquisition techniques and patient demograph-
ics, contributing to a more versatile diagnostic toolkit. 
These algorithms hold the promise of expediting diagno-
ses, enabling early intervention, and facilitating a more 
patient-centric approach to dental care. Leveraging this 
potential, researchers are exploring the integration of 
deep learning algorithms into dental radiology for the 
precise identification of tooth germs [8, 17–19].

Developmental staging of all molars was evaluated 
to automate the processes for age determination. The 
molars in panoramic images were automatically detected 
and the developmental stage was classified. The aim of 
this study is to evaluate the performance of different deep 
learning models for the detection of permanent molar 
germ development stages in pediatric and adult pano-
ramic radiographs. 9 different deep learning models were 
analyzed, and model performances were evaluated using 
well known detection metric mean average precision 
(mAP), accuracy, precision, recall and F1-score metrics.

Methods
Data preparation
The retrospective work was approved by the University 
Ethics Committee (no: 2023–1216). Patients between 
the ages of 5 and 25, who had panoramic radiographs 
taken for different reasons between 2022 and 2023 from 
the Radiology archives of Ankara Yıldırım Beyazıt Uni-
versity Faculty of Dentistry, were included in the study. 
Systemic and congenital diseases, cleft lip and palate, 
multiple tooth eruption disorders and delayed eruption, 

any cyst or tumor in the jaw region, tooth agenesis and a 
history of endodontic treatment on the relevant perma-
nent molars and images with artifacts that would affect 
the evaluation were determined as exclusion criteria.

The developmental stages of permanent molars were 
modified according to Haavikko’s classification and 
divided into 4 classes (M1-4), as shown in Fig. 1 [20].

In accordance with this classification, the developmen-
tal stages of all permanent molars were evaluated using 
panoramic radiographs. In case of differences in the 
formation of each root (for example, if the mesial root 
was formed early and the other roots were formed late), 
the stage with the slowest root formation was used. For 
panoramic radiographs used for evaluation, dental pano-
ramic device (Planmeca, Helsinki, Finland) was used with 
60–70 kVp, 5–12.5 mA, exposure time of 13.8–16 s.

The dataset included 210 panoramic radiographs. were 
collected. Nine state-of-the-art deep learning models 
were trained with the train data and the models were 
checked every five epochs with the validation data. It was 
ensured that all classes were balanced. Instead of relying 
on a single train-test split, k-fold cross-validation was 
applied (k = 6) to repeatedly train and evaluate models 
on different partitions of the dataset. This leads to a more 
robust estimate of the model’s performance.

k-fold cross-validation is a robust resampling tech-
nique used to assess the performance of machine learn-
ing models while mitigating overfitting. The dataset is 
divided into k equally sized subsets (folds), where the 
model is trained on k-1 folds and tested on the remaining 
fold. This process is repeated k times, ensuring that each 
fold serves as the test set once. The final performance 
metric is obtained by averaging the results across all iter-
ations, providing a more reliable estimate of the model’s 
generalizability.

Labeling of the molars was performed by LabelImg. 
It was performed by manually selecting the permanent 
molars on the right and left in both jaws. A ground truth 
consisting of localization and class information was cre-
ated. Before labeling, a calibration session was conducted 
on 20 panoramic radiographs that were not included in 

Fig. 1 Stages of tooth formation for assessing the development of molar teeth according to Haavikko et al. [20] and the categorization used 
in the present work
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the study. All evaluations and labeling were performed 
twice by an oral and maxillofacial radiologist (10 years of 
experience, B.Ç.). Images that could not be matched in 
the evaluation were not included in the study.

Google Colab was used for training the models. The 
data set was saved in Google Drive and accessed via 
Google Colab. The trained models were then tested 
with the test data and then performance metrics were 
calculated in the end. Additionally, the best model per-
formance was also tested by an external data that was 
publicly available [21]. Testing with an external dataset 
in a deep learning-based application provides a crucial 
assessment of the model’s generalization ability, ensur-
ing it performs well on unseen data from various centers. 
It enhances robustness by evaluating the model’s ability 
to handle variations in imaging conditions, noise levels, 
and demographic differences. Additionally, external vali-
dation improves real-world applicability by simulating 
deployment conditions, particularly when data originates 
from different institutions or sources. This process also 
helps detect potential biases that may have arisen from 
training on a limited or homogeneous dataset. Further-
more, it enables objective performance benchmarking 
by allowing comparisons with other models using stand-
ardized datasets. In regulated fields such as healthcare, 
external validation is often a necessary step for credibility 
and approval. Finally, testing on an external dataset helps 
identify weaknesses in the model, guiding further refine-
ments to improve accuracy and reliability.

Brief summary on CNNs
Cascade R‑CNN with ResNet101
Cascade R-CNN is an extension of the popular Faster 
R-CNN framework for object detection. Its main goal is 
to enhance detection accuracy by employing a cascaded 
structure comprising multiple detector stages. The fun-
damental concept behind Cascade R-CNN involves 
iteratively refining bounding box predictions and mini-
mizing false positives at each stage. This is accomplished 
by incorporating a sequence of classifier cascades, with 
each cascade stage being progressively more discerning 
and precise than its predecessor [22]. In this study we 
employ a deep neural network called ResNet101 as Cas-
cade R-CNN’s backbone architecture. ResNet101 (Resid-
ual Network) is a deep convolutional neural network 
architecture that has 101 layers.

YOLOv3 with DarkNet53
YOLO (You Only Look Once), is a highly regarded algo-
rithm for real-time object detection. Renowned for its 
exceptional speed and accuracy, YOLOv3 represents an 
advancement over the original YOLO algorithm, deliver-
ing substantial enhancements in detection performance. 

YOLOv3 follows the single-shot detection approach, 
meaning it performs object detection directly on the 
entire image in one pass, rather than using a two-stage 
region proposal process. This makes it faster compared 
to other object detection methods [23]. In this study 
we employ a deep neural network called Darknet-53 as 
YOLOv3’s backbone architecture. Darknet-53 is a variant 
of the Darknet architecture and consists of 53 convolu-
tional layers, enabling it to extract rich and high-level fea-
tures from input images.

Hybrid Task Cascade (HTC) with ResNeXt101
Hybrid Task Cascade (HTC) is an advanced framework 
for object detection that extends the Cascade R-CNN 
architecture. It strives for outstanding performance by 
tackling issues like precise localization, handling objects 
at different scales, and minimizing false positives. HTC 
has proven its success by achieving rank 1st in the COCO 
2018 Challenge at object detection task [24]. In this study 
we employ a deep neural network called ResNeXt101 as 
HTC’s backbone architecture. ResNeXt101 is an exten-
sion of the ResNet architecture that incorporates cardi-
nality, allowing for parallel pathways within each block.

DetectoRS with ResNet50
DetectoRS (Detecting Objects with Recursive Fea-
ture Pyramid and Switchable Atrous Convolution) is 
an advanced object detection algorithm that aims to 
improve the accuracy and robustness of object detec-
tors. It addresses the challenges posed by scale varia-
tion, occlusion, and object layout diversity. DetectoRS 
has demonstrated state-of-the-art performance on vari-
ous benchmark datasets for object detection tasks. By 
incorporating the Recursive Feature Pyramid, Switch-
able Atrous Convolution, and object context aggrega-
tion, DetectoRS enhances the accuracy, adaptability, 
and robustness of object detectors [25]. In this study 
we employ a deep neural network called ResNet50 as 
DetectoRS’s backbone architecture. ResNet50 (Residual 
Network) is a deep convolutional neural network archi-
tecture that has 50 layers.

SSD with VGG16
SSD (Single Shot MultiBox Detector) is a popular object 
detection algorithm known for its simplicity and effi-
ciency. It provides real-time object detection capabilities 
by performing object localization and classification in a 
single forward pass of a deep neural network. SSD offers 
a good balance between speed and accuracy in real-time 
object detection tasks. In addition, SSD achieved higher 
mAP value in VOC2007 test images compared to Faster 
R-CNN [26]. In this study we employ a deep neural net-
work called VGG16 as SSD’s backbone architecture. 
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VGG16 is a convolutional neural network (CNN) archi-
tecture that was introduced by the Visual Geometry 
Group (VGG) at the University of Oxford that has 16 
layers.

EfficientNet
EfficientNet is a family of convolutional neural network 
models that have gained attention for their remark-
able performance and efficiency. These models have 
achieved state-of-the-art results on various computer 
vision tasks while maintaining a high level of computa-
tional efficiency. EfficientNet models have demonstrated 
superior accuracy on tasks such as image classification, 
object detection, and semantic segmentation. They have 
achieved state-of-the-art results on benchmark datasets 
like ImageNet, while maintaining computational effi-
ciency, making them highly valuable in both research and 
practical applications [27].

NAS‑FPN with ResNet50
This model is developed by Ghiasi et al. NAS-FPN, which 
stands for Neural Architecture Search Feature Pyramid 
Network, is an advanced architecture designed for object 
detection tasks. It combines two key components: Neu-
ral Architecture Search (NAS) and Feature Pyramid Net-
work (FPN). Neural Architecture Search is a technique 
that automates the design process of neural network 
architectures. Instead of manually designing architec-
tures, NAS-FPN leverages a search algorithm to explore 
and discover optimal network architectures specifically 
tailored for feature pyramid networks.

Feature Pyramid Network (FPN) is a widely used 
architecture for multi-scale feature extraction in object 
detection. It enhances the detection performance by fus-
ing features from different scales, enabling the network 
to detect objects of varying sizes and maintain spatial 
information [28]. In this study we employ a deep neural 
network called ResNet50 as NAS-FPN’s backbone archi-
tecture. ResNet50 (Residual Network) is a deep convolu-
tional neural network architecture that has 50 layers.

Deformable DETR with ResNet50
Deformable DETR is an advanced object detection algo-
rithm that builds upon the DETR (Detection Trans-
former) framework. It introduces deformable attention 
mechanisms to enhance the model’s ability to handle 
objects with complex shapes and appearances. Deform-
able DETR has shown promising results in various 
computer vision tasks, including object detection and 
panoptic segmentation. It improves the model’s ability 
to handle objects with complex shapes, occlusions, and 
variations in scale, resulting in more accurate and robust 
detections [29]. In this study we employ a deep neural 

network called ResNet50 as Deformable DETR’s back-
bone architecture. ResNet50 (Residual Network) is a 
deep convolutional neural network architecture that has 
50 layers.

Probabilistic Anchor Assignment (PAA) with ResNet101
Probabilistic Anchor Assignment (PAA) is a technique 
used in object detection algorithms that rely on anchor-
based methods. Anchors are predefined bounding boxes 
of different sizes and shapes that act as reference points 
for detecting objects in an image. In traditional anchor-
based methods, each anchor box is assigned a positive 
or negative label based on a fixed overlap threshold with 
the ground-truth object. PAA introduces a probabilistic 
approach to anchor assignment. Instead of binary labels, 
it assigns a probability score to each anchor, indicat-
ing the likelihood of it being associated with an object. 
This assignment considers the degree of overlap between 
the anchor box and the ground-truth object [30]. In this 
study we employ a deep neural network called ResNet101 
as PAA’s backbone architecture. ResNet101 (Residual 
Network) is a deep convolutional neural network archi-
tecture that has 101 layers.

Transfer learning
Transfer Learning is a technique in which a previously 
trained model is adapted to solve a new problem with a 
new data set. For this task, a saved file of the previously 
trained version of the model is used. The model is then 
retrained with new data and adapted to perform a new 
task. In this way, instead of training the model from 
scratch, we reuse features such as weight learnt from 
an existing model and fine-tune it for a new task. This 
reduces the training time of the model. In addition, high 
performance rates are achieved despite being trained 
with little data. All 9 models used in this study were pre-
trained with the COCO 2017 dataset.

Preprocessing
Normalization
The “Normalize” operation performs pixel-wise nor-
malization on the image, which is a crucial preprocessing 
step in deep learning models. This method adjusts input 
images pixels values to make training more stable and 
faster. This process was applied in all models used in this 
study.

Padding
The “Pad” is a method that adds extra pixels to the image 
so that all images used to train the model can be divided 
by a fixed value. In this study, the fixed value is 32. By 
default the value of the added pixels are “0” (black). 
For example, in order to divide both dimensions of a 
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1900 × 1050 pixel image by 32, the “Pad” method adds 
20 pixels to the 1900 pixel axis and 30 pixels to the 1050 
axis, making both axes divisible by 32. In order for the 
convolution layers of models such as YOLO and R-CNN 
to work correctly, the images used for training must be 
divisible by a fixed number, usually 16 or 32. Therefore, 
“Pad” is an important preprocessing operation. Except 
for the “SSD” model, this process is performed in all 
other models used.

Loading annotations
The”LoadAnnotations” is the most important pre-
processing stage that loads ground truth labels into the 
trained model. In this study, data such as bounding box 
(bbox) and class labels were loaded into the model with 
this process. This process was also applied to all models 
used.

Data augmentation
Resizing
“Resize” data augmentation technique was used in all 
models tested in this study. Although the “img_scale” 
parameter varies from model to model, “keep_ratio” was 
selected as “True” in all models. In this way, all images 
were resized while preserving the aspect ratios of the 
original image. In general, the use of the “Resize” aug-
mentation technique prevents the models from being 
trained with only one dimension of data and prevents 
“over fitting”. In this way, it is ensured that the models can 
detect images of different sizes.

Random flipping
“RandomFlip” is one of the most used data augmentation 
method that rotates the images and bounding boxes in 
the training set on the horizontal axis at a specified rate. 
In this study, the rotation rate is set to 0.5 for all models 
used. With the “RandomFlip” method, the models were 
trained at different angles to test the models in realis-
tic scenarios. In addition, overfitting was prevented by 
changing the orientations of images and objects.

Random cropping
RandomCrop is a data augmentation technique that ran-
domly selects and crops a portion of the image, ensuring 
that labelled objects remain visible. Like RandomFlip, it 
prevents overfitting by preventing the model from mem-
orising the location of objects. It also focuses the model 
on different parts of the image, making it easier to detect 
small objects. This data augmentation method was used 
in Deformable DETR, EfficientNet, NAS-FPN, SSD and 
YOLOv3 models.

Photo metric distortion
PhotoMetricDistortion is a data augmentation technique 
that randomly changes the brightness, contrast, satura-
tion and hue of an image to simulate different lighting 
conditions. This method increases the robustness of the 
model against different lighting conditions by randomly 
changing the brightness and contrast of the data. It also 
prevents overfitting by introducing colour variations. 
In this study, the method was used only in SSD and 
YOLOv3 models.

Evaluation metrics
When using deep learning models, certain performance 
metrics are used to show that these models have been 
successfully trained and tested. In this study, accuracy, 
precision, recall and F1-score metrics are used to com-
pare the performance of the models used.

Accuracy refers to the measurement of how well a 
model correctly predicts or classifies instances from a 
given dataset. Accuracy is calculated by dividing the 
number of correctly classified instances (true positives 
and true negatives) by the total number of instances 
in the dataset. Precision is a performance metric that 
measures the accuracy of positive predictions made by 
a model. It focuses on the proportion of correctly pre-
dicted positive instances out of all the instances predicted 
as positive. It calculates the ratio of true positive predic-
tions to the total number of positive predictions made 
by the model. Recall, also known as sensitivity or true 
positive rate is a performance metric that measures the 
ability of a model to correctly identify positive instances 
from the total number of actual positive instances in a 
dataset. Recall calculates the proportion of true positive 
predictions made by the model out of all the actual posi-
tive instances in the dataset. The F1-score is a metric that 
combines precision and recall into a single measure. It 
provides a balanced assessment of a model’s performance 
by considering both the ability to correctly identify posi-
tive instances (recall) and the accuracy of positive predic-
tions (precision).

Object detection is a computer vision task that involves 
identifying and locating objects of interest within an 
image or a video. In the context of deep learning, object 
detection often involves using neural networks to predict 
bounding boxes around objects and assign class labels 
to those objects. Evaluation of object detection is com-
monly performed by Average Precision (AP) in computer 
vision research. It calculates the area under the precision-
recall curve for different confidence thresholds. It indi-
cates a deep learning model’s ability to accurately localize 
objects interested. It is also related to Intersection Over 
Union (IOU) which measures the overlap of predicted 
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bounding box to the ground truth. Mean Average Pre-
cision (mAP) is the average AP across multiple classes. 
Table 1 summarizes each formula for the evaluation met-
rics applied in this work.

Precision-Recall curves providing the area under curve 
(AUC) includes legends that are Common Objects in 
Context (COCO) metrics. These are C75, C50, Loc, Sim, 
Oth, and FN. While C75 and C50 stand for AUC for 
Intersection over Union (IoU) of 0.75 and 0.5 respec-
tively, Loc refers to AUC with ignoring localization 
errors. Sim, Oth and FN indicate AUC while removing 
super-category class confusions, class confusions and all 
remaining errors respectively.

Results
Deep learning models were implemented for molar teeth 
germ detection. Table 2 presented results on average, i.e. 
metrics were presented as an average of all 4 classes for 
each fold considering k-fold cross validation (k = 6). The 
evaluation of various object detection models based on 

accuracy, mean Average Precision (mAP), recall, and 
F1-score reveals that Deformable DETR outperforms all 
other models, achieving the highest accuracy (0.81), mAP 
(0.86), and F1-score (0.86), indicating superior detection 
and classification capabilities. HTC and Cascade R-CNN 
follow closely, both attaining an accuracy of 0.79, with 
mAP values of 0.84 and 0.83, respectively, demonstrat-
ing robust performance across different detection tasks. 
DetectoRS and YOLOv3 exhibit moderate performance, 
with YOLOv3 achieving a competitive mAP (0.82) but 
lower recall (0.78), making it a viable choice for real-
time applications. NAS-FPN presents a balanced per-
formance, though with a lower mAP (0.75). In contrast, 
PAA and EfficientNet yield lower accuracy (0.68 and 
0.69, respectively) and mAP (both 0.68), though their 
recall values suggest reasonable object detection capabili-
ties. Finally, SSD performs the weakest, with the lowest 
accuracy (0.58) and F1-score (0.65), indicating limited 
suitability for high-precision detection tasks. These find-
ings suggest that Deformable DETR is the most effective 
model for high-accuracy object detection, while YOLOv3 
remains a suitable choice for applications requiring real-
time inference.

Table  3 demonstrated class-wise evaluation metrics 
for model, still average of six-folds. The performance of 
object detection models varied across the four classes, 
highlighting differences in detection effectiveness for 
each category. For class M1, Deformable DETR achieved 
the highest F1-score (0.86), followed closely by HTC 
(0.85) and Cascade R-CNN (0.84), indicating strong 
detection capabilities in this category. In contrast, SSD 
and PAA exhibited the lowest F1-scores (0.53 and 0.65, 
respectively), suggesting weaker performance in M1. For 
class M2, Cascade R-CNN, YOLOv3, and Deformable 
DETR demonstrated high precision (0.86–0.88), though 
recall varied, with Deformable DETR achieving the high-
est F1-score (0.79). HTC and Cascade R-CNN followed 
closely, both attaining an F1-score of 0.77. SSD again 
underperformed, with the lowest F1-score (0.65), indi-
cating difficulties in detecting objects of class M2. For 
class M3, Cascade R-CNN, HTC, and Deformable DETR 
achieved the highest precision (0.83–0.85), though their 
recall values varied. Deformable DETR led with the high-
est F1-score (0.80), while Cascade R-CNN and HTC fol-
lowed at 0.78 and 0.77, respectively. SSD had the lowest 
F1-score (0.58), highlighting its difficulty in detecting 
objects from M3. For class M4, most models performed 
significantly better, with Deformable DETR, Cascade 
R-CNN, and HTC attaining the highest F1-scores (0.92–
0.94). Cascade R-CNN and HTC both exhibited strong 
recall (0.99), indicating high sensitivity in detecting M4 
objects. SSD and EfficientNet had the lowest F1-scores 
(0.82), showing comparatively weaker performance in 

Table 1 Equations for evaluation metrics used

Average Precision

APthreshold =
∫
1

0
p(x)dx

Mean Average Precision for n-classes

mAPthreshold =
1

n
n
i=1

APi

Accuracy

Accuracy =
TP+TN

TP+TN+FP+FN

Precision

Precision =
TP

TP+FP

Recall (Sensitivity)

Recall = TP
TP+FN

F1-score

F1Score = 2 ∗
Precision∗Recall
Precision+Recall

=
2∗TP

2∗TP+FP+FN

Intersection over Union (IoU)

IoU =
area(groundtruth∩predicted)
area(groundtruth∪predicted)

Table 2 Model results

Models Accuracy mAP Recall F1‑score

Cascade R-CNN 0.79 0.83 0.85 0.84

YOLOv3 0.72 0.82 0.78 0.80

HTC 0.79 0.84 0.85 0.84

DetectoRS 0.76 0.80 0.83 0.81

SSD 0.58 0.66 0.65 0.65

EfficientNet 0.69 0.68 0.79 0.73

NAS-FPN 0.72 0.75 0.79 0.76

Deformable DETR 0.81 0.86 0.85 0.86

PAA 0.68 0.68 0.79 0.73
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this class. Overall, Deformable DETR, Cascade R-CNN, 
and HTC demonstrated the most consistent and reliable 
performance across all four classes.

Next, the best performing model from the previous step 
was tested by an external public dataset to provide valid-
ity in real-world conditions using data originating from 
different sources. 30 panoramic radiographs were used 
for testing. Table 4 demonstrates that Deformable DETR 
achieves an accuracy of 0.69, indicating the proportion of 

correctly classified instances. The mean Average Preci-
sion (mAP) is 0.72, reflecting the model’s precision-recall 
trade-off across different thresholds. The recall value of 
0.82 suggests that the model effectively identifies rel-
evant instances, while the F1-score of 0.77 represents a 
balanced measure of precision and recall, showing reli-
able overall performance. The second part provides a 
more detailed breakdown of Deformable DETR’s perfor-
mance across four classes based on Precision, Recall, and 

Table 3 Models class-wise results

Models Precision Recall F1‑Score

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

Cascade R-CNN 0.72 0.86 0.83 0.89 1.00 0.69 0.74 0.99 0.84 0.77 0.78 0.94

YOLOv3 0.71 0.86 0.76 0.89 0.83 0.64 0.72 0.90 0.77 0.73 0.74 0.89

HTC 0.76 0.79 0.83 0.90 0.97 0.70 0.72 0.99 0.85 0.77 0.77 0.94

DetectoRS 0.71 0.84 0.80 0.87 0.96 0.65 0.73 0.98 0.82 0.73 0.76 0.92

SSD 0.63 0.68 0.61 0.73 0.45 0.63 0.57 0.93 0.53 0.65 0.58 0.82

EfficientNet 0.56 0.73 0.69 0.75 0.89 0.66 0.65 0.90 0.70 0.69 0.67 0.82

NAS-FPN 0.60 0.74 0.76 0.90 0.94 0.69 0.60 0.90 0.73 0.71 0.67 0.90

Deformable DETR 0.78 0.88 0.85 0.94 0.97 0.72 0.76 0.96 0.86 0.79 0.80 0.92

PAA 0.51 0.75 0.72 0.75 0.90 0.65 0.69 0.93 0.65 0.69 0.70 0.83

Table 4 Comparisons between the studies in the literature on germ detection and this study

Author Task Type of Image Model Number of 
Classes

Data size Metrics

Çalışkan et. al Object Detection Panoramic Faster R-CNN 1 74 Accuracy: 0.8372,
Sensitivity: 0.4545
Specificity: 0.9688
Precision: 0.8333

De Tobel et. al Classification Panoramic AlexNet 10 400 Mean accuracy: 0.51, Mean absolute 
difference: 0.6,
Mean linearly weighted kappa: 0.82

Merdietio et. al Classification Panoramic DenseNet201 10 400 Accuracy: 0.61
mean absolute difference: 0.53
linear Cohen’s kappa coefficient: 0.84

Banar et. al Segmentation Panoramic U-Net like CNN model 10 400 Dice score: 93%
Accuracy: 54%
mean absolute error: 0.69
linear Cohen’s kappa coefficient: 0.79

Kaya et. al Object Detection Panoramic YOLOv4 1 4518 Average Precision: 94.16%
Precision: 0.89
Recall: 0.91
F1-score: 0.90

This work Object Detection Panoramic Cascade R-CNN
YOLOv3
HTC
DetectoRS
SSD
EfficientNet
NAS-FPN
Deformable DETR
PAA

4 210 Avg. Accuracy: 0.81
Average Precision: 0.86
Average Recall: 0.85
Average F1-score: 0.86
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F1-score. Precision values range from 0.52 (M1) to 0.93 
(M3), showing that M3 has the highest precision. Recall 
scores vary from 0.56 (M3) to 1.00 (M4), meaning M4 
captures all relevant instances. The F1-score, which bal-
ances precision and recall, fluctuates between 0.67 (M1) 
and 0.80 (M2), indicating that M2 performs best in main-
taining both precision and recall. Table 5.

Detection predictions performed by the best and the 
worst performing models were demonstrated in Figs.  2, 
3 and  4. Three different image samples were randomly 
chosen. In each figure, it includes the ground truth of the 
image, prediction result from the best performing model 
and the worst performing model, SSD, were sequentially 
positioned with figure labels A, B and C respectively.

Fig. 2 For the selected first image, from up to bottom; A. Ground truth, B. predicted result from Deformable DETR with ResNet50 and C. predicted 
result from SSD
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Figure  5 shows the loss curve obtained from the 
Deformable DETR model at 100 epochs. The loss curve 
indicates that the training and validation loss values 
decrease regularly as the number of epochs increases, 
resulting in successful training with sufficient number of 
epochs.

Figure 6 presents precision-recall curve. In this graph, 
the AUC (Area Under Curve) metric is 0.918. There 
are no errors related to super category false positives 
and class confusions. When background confusions are 
removed, the AUC will be 1. In general, the errors were 
due to location and background errors.

Fig. 3 For the selected second image, from up to bottom; A. Ground truth, B. predicted result from Deformable DETR with ResNet50 and C. 
predicted result from SSD
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Discussion
Staging the development of molar teeth, especially the 
third molar, is an age estimation process for infants, ado-
lescents, and adults. Manual staging is a process in which 
a qualified one examines images, categorization of the 
development for specific staging, resulting in an approxi-
mation of age. As a significant limitation, it is prone to 

variability within and between experts in staging, which 
was further reported by De Tobel et  al. for third molar 
[8]. Therefore, to handle this issue, deep learning is a 
promising tool instead of manual labor. Detection of 
molar teeth and their staging classification is an essen-
tial step towards automated systems for age estimation 
and charting. Deep learning has been applied to a wide 

Fig. 4 For the selected third image, from up to bottom; A. Ground truth, B. predicted result from Deformable DETR with ResNet50 and C. predicted 
result from SSD
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range of dental problems in recent years [31–34]. There is 
a limited number of previous studies in the literature on 
development staging of molar teeth for age estimation.

Çalışkan et. al. used deep learning algorithms to detect 
submerged primary molars. In their study, they detected 
submerged teeth in 74 panoramic radiography images 
using the Faster R-CNN deep learning model. They com-
pared their results with the findings made by 2 dentists. 
As a result, they obtained accuracy of 0.8372, sensitivity 
of 0.4545, specificity of 0.9688 and precision of 0.8333 
metrics [17].

Tobel et  al. classified the lower third molar develop-
mental stages in order to make age estimation [8]. They 
classified the developmental stages of lower third molars 
in 400 panoramic radiography images using Adobe Pho-
toshop and MATLAB programs. They used AlexNET 
deep learning model to classify these images. As a result, 
Mean accuracy of 0.51, Mean absolute difference of 0.6 
and Mean linearly weighted kappa of 0.82 metrics were 
obtained.

Merdietio et  al. performed the classification of the 
developmental stages of the third molars using the deep 
learning method [19]. In this study, images of the third 
molar teeth were obtained manually from 400 panoramic 
X-ray radiography images. These images are divided into 
three as bounding box (BB), rough segmentation (RS) 
and full segmentation (FS). DenseNet201 CNN model 
was used to classify these images. With this model, accu-
racy of 0.61, mean absolute difference of 0.53 and linear 
Cohen’s kappa coefficient of 0.84 results were obtained, 
respectively.

Banar et al. used deep learning to detect the develop-
mental stages of the third molar in their study [6]. The 
dataset they used consists of 400 panoramic X-ray radio-
graphs. In this study, the development of third molars is 
divided into 10 stages. A 3-step CNN-based, U-Net like 
model was used for the detection, segmentation and clas-
sification of these stages. In the previous works, detec-
tion and segmentation were done manually and only 
classification was done automatically [19]. In this study, 
all stages were carried out automatically with the CNN 
model. With this model, they obtained dice score of 93%, 

Fig. 5 Loss curve for 100 epochs from Deformable DETR 
with ResNet50

Fig. 6 Precision-Recall curve from Deformable DETR with ResNet50
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accuracy of 54%, mean absolute error of 0.69 and linear 
Cohen’s kappa coefficient of 0.79, respectively.

Kaya et al. used a deep learning model to detect tooth 
germs in panoramic X-ray radiography dataset [18]. In 
their study, CNN-based YOLOv4 model with CSPDark-
net53 backbone is used for tooth germ detection. A sin-
gle class tooth germ was chosen for all tooth types. It was 
resulted that the average precision, precision, recall, and 
F1-score were 94.16%, 0.89, 0.91 and 0.90 respectively for 
the tooth germ class.

In this study, the developmental stages of molars 
were divided into 4 classes and these stages were auto-
matically determined by nine deep learning methods. 
These models are Cascade R-CNN, YOLOv3, Hybrid 
Task Cascade(HTC), DetectorRS, SSD, EfficientNet, 
NAS-FPN, Deformable DETR and Probabilistic Anchor 
Assignment(PAA), respectively. The dataset used consists 
of 210 panoramic radiography images. Among the mod-
els used, the Deformable DETR CNN model gave the best 
results with the values of 0.82 total accuracy, 0.86 average 
precision, 0.86 average recall and 0.86 average F1-score, 
respectively. The two main features that distinguish the 
current study from other studies are: (i) staging was per-
formed for all molars instead of just a single molar, (ii) 
the performance of a large number of deep learning mod-
els was analyzed in the broadest perspective. The results 
obtained from literature reviews and from this study are 
given in Table 4.

Although deep learning has achieved significant suc-
cess across various fields, certain limitations restrict its 
broader applicability and reliability. A key challenge of 
this work is the dependence on extensive, multi-cen-
tered labeled datasets, as deep learning models often 
fails due to poor, insufficient and imbalanced data. 
Moreover, staging of tooth formation for assessing the 
development of molar teeth according to Haavikko 
et al. [20] was simplified in the present work by bring-
ing them together in groups of three as shown in Fig. 1. 
Furthermore, there is a lack of standardized reporting 
practices, which makes benchmarking efforts difficult 
to improve future research.

Conclusion
In this study, the developmental stages of permanent 
molar teeth in panoramic radiography images were 
divided into 4 classes and the detection of these classes 
was carried out with nine CNN models. Among these 
models, the best and most consistent results were 
obtained from the Deformable DETR model. In the 
future, it is planned to create an auxiliary system for den-
tists that detects the developmental stages of all tooth 
germ with this deep learning model.
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