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Abstract
Objectives To analyze the accuracy of the robotic system in clinical studies and assess potential factors that might 
affect the accuracy of robotic implant placement.

Materials and methods PubMed, Embase, and Cochrane Central Register of Controlled Trials were used to search for 
studies published from August 2014 till October 2024. Studies on robotic computer-assisted implant surgery (R-CAIS) 
were identified. Furthermore, manual searches were performed for selected journals. Only clinical studies were 
included. Subgroup analysis was performed based on robot autonomy, different dentitions, and the working principle 
of the camera.

Results Sixteen studies met the inclusion criteria, evaluating 908 implants. The meta-analysis of accuracy showed 
that the average global platform deviation, global apex deviation, and angular deviation were 0.69 mm (95% CI: 
0.61‒0.77, I2 = 94%), 0.72 mm (95% CI: 0.64‒0.79, I2 = 93%), and 1.62° (95% CI: 1.34°‒1.89°, I2 = 96%), respectively. In 
subgroup analysis, Meta-generic inverse variance analysis observed statistically significant differences in global 
platform deviation and apex deviation between robots using infrared and mechanical tracking (p < 0.01), as well 
as between those using visible light and mechanical tracking (p < 0.01). No significant differences were observed 
between autonomous and semi-active systems and different dentitions.

Conclusion The R-CAIS technology demonstrated a high level of accuracy. However, further large-scale, multi-center, 
randomized, controlled clinical trials are necessary to compare robotic implant placement with other techniques, and 
the additional factors influencing robotic implant placement must be explored.
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Introduction
The precise placement of dental implants is critical to 
ensure long-term stable aesthetics and function. While 
improper implant placement can result in complications, 
such as impinging on adjacent anatomical structures like 
the maxillary sinus or the inferior alveolar nerve canal 
[1–3]. Digital technologies have revolutionized implant 
dentistry by enabling prosthetically driven implant place-
ment, achieving a higher accuracy level, promoting treat-
ment consistency, and decreasing intraoperative risks [4, 
5]. Computer-assisted surgery can be categorized into 
static computer-assisted implant surgery (S-CAIS) and 
dynamic computer-assisted implant surgery (D-CAIS). 
The latest digital technology, robotic computer-assisted 
implant surgery (R-CAIS), is now available.

The first-generation technology is S-CAIS, which con-
nects the virtual planning environment and the surgical 
field through a pre-fabricated surgical template [6]. How-
ever, S-CAIS is constrained by issues including template 
misalignment, limited visualization, and the absence 
of intraoperative adjustability. A systematic review of 
S-CAIS demonstrated significant deviations in accuracy, 
indicating a potential risk of compromising adjacent vital 
anatomical structures [7–9].

The second-generation technology, D-CAIS, utilizes 
optical tracking and real-time imaging to assist with 
implant placement, allowing for intraoperative adjust-
ments and enhancing surgical flexibility [10, 11]. While 
some studies suggest that D-CAIS may provide higher 
accuracy than S-CAIS, a randomized controlled trial 
found no significant difference between the two methods 
[12, 13]. Additionally, D-CAIS requires greater technical 
expertise, as surgeons must actively monitor real-time 
feedback during procedures, and its accuracy may vary 
significantly based on operator experience [14–17].

Robotic surgery in dental implantology represents 
cutting-edge digital technology [18, 19]. R-CAIS utilizes 
an operational platform, visual system, and central con-
trol system to accurately identify implant sites and direct 
the robotic arm for implant preparation and placement 
according to the preoperative plan [20, 21]. Combining 
real-time navigation with haptic feedback, R-CAIS has 
shown excellent accuracy across various studies [22–24]. 
Both in vitro and in vivo research indicated that R-CAIS 
outperformed D-CAIS in terms of accuracy, particu-
larly in complex scenarios such as edentulous jaws and 
immediate implant placements [25–27]. Despite the 
increasing number of clinical studies on R-CAIS, dedi-
cated analyses on the accuracy of robotic systems remain 
limited. According to the Idea, Development, Explora-
tion, Assessment, and Long-term monitoring (IDEAL) 
framework, R-CAIS has progressed through preclinical 
studies and proof-of-concept phases and is now rapidly 
advancing, highlighting the need for large-sample clinical 

research [28]. Therefore, it is crucial to analyze the accu-
racy of R-CAIS clinical applications. Current meta-anal-
yses reveal a limited number of studies, particularly in 
complex cases, randomized controlled trials, and multi-
center research [29, 30]. Additionally, the factors influ-
encing robotic precision remain unclear.

This review aims to (1) investigate the accuracy of the 
robotic system in clinical applications, thereby provid-
ing further clinical evidence to support the development 
of robotic systems; (2) study potential factors that may 
influence the accuracy of robotic implant placement, 
including robot autonomy, dentitions, and visual systems.

Materials and methods
PICO question
This systematic review followed the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines [31]. The protocol was registered 
in PROSPERO (CRD42024590506). The focused ques-
tion of this review was: “What is the accuracy of robotic 
computer-assisted implant surgery?” To facilitate this 
investigation, the inquiry was structured using the PICO 
(population, intervention, comparison, outcomes) frame-
work (Table 1).

Eligibility criteria
The studies included in this review met the following 
inclusion criteria: (1) human clinical studies; (2) clinical 
trials with at least five patients and 10 implants; (3) stud-
ies using a robotic system to place implants; (4) studies 
on single-tooth loss, partially edentulous and/or fully 
edentulous; (5) studies using global platform deviation, 
global apex deviation, and angular deviation to describe 
accuracy; (6) studies in English; (7) studies using com-
mercial robots.

A previous meta-analysis [32] on dynamic naviga-
tion established inclusion criteria of 10 patients and 10 
implants. Considering the limited number of existing 
robotic clinical studies and the typical implantation range 
of 4 to 6 implants for complete denture patients, a study 
involving 5 patients could yield 20 to 30 implants, thus 
satisfying the statistical requirement of exceeding 10 
implants. Therefore, we established the inclusion criteria 
to be greater than 5 patients or more than 10 implants.

The exclusion criteria were: (1) reviews, systematic 
reviews, expert points, and case reports with less than 
10 implants or 5 patients; (2) studies that only used ani-
mals, cadavers, and in vitro studies; (3) studies that did 
not record the accuracy clearly; (4) studies only included 
tilted or zygomatic implants.

Search strategy
The search was conducted in the following electronic 
databases: PubMed, Embase, and Cochrane Central 
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Register of Controlled Trials (Table  1) for studies pub-
lished from August 2014 to October 2024. The search 
used the terms (“robot-assisted surgery,” or “robotic sur-
gical system,” or “robotic system,” or “robot surgery”) and 
(“dental implants” or “oral implantology”), limiting the 
language of articles to English. Furthermore, a manual 
search was conducted for articles published in the fol-
lowing journals over the past decade: Journal of Clinical 
Periodontology, Journal of Prosthetic Dentistry, Jour-
nal of Dentistry, Clinical Oral Implants Research, Clini-
cal Implant Dentistry and Related Research, and Journal 
of Periodontology. Additionally, grey literature was 
searched on OpenGrey and www.greylit.org.

Study selection
Two independent reviewers (P.L. and Z.L.) performed 
the screening by independently evaluating the titles 
and abstracts of the studies after removing duplicates. 
Next, two reviewers independently searched and fur-
ther assessed the full text of potentially eligible studies. 
Appendix 1 presents the reasons for article exclusion at 
this stage. After the selection process, another researcher 
experienced in meta-analysis (A.L.) conducted an analy-
sis and evaluation of the selected articles. Any discrepan-
cies in the article selection process were resolved through 
further discussion to reach a consensus.

Data extraction and outcome measures
Two reviewers (P.L. and Z.L.) independently collected 
data by organizing the article information into tables, 
which were then reviewed by another researcher who 
provided modifications and suggestions regarding any 
discrepancies.

The CBCT images of planned and actual placement 
were compared to assess the accuracy of implants by 
measuring three dimensions: global platform devia-
tion, global apex deviation, and angular deviation. In 
this review, global platform deviation was defined as the 
three-dimensional coronal distance between the planned 
and actual implant positions, measured from the cen-
tral axis point. Global apex deviation was defined as the 
three-dimensional apical distance between the planned 
and actual implant positions, also measured from the 
central axis point. The angular deviation was defined as 
the angle measured from the central axis of the planned 
and actual implant positions. All three accuracy variables 
were assessed using CBCT, as illustrated in Fig. 1.

Risk of bias assessment
Two reviewers (P.L. and Z.L.) conducted independent 
assessments of the quality of the clinical studies. Any dif-
ferences were resolved through discussion with the col-
laborator (A.L.) to reach a consensus. In randomized 
controlled clinical trials (RCTs), the risk-of-bias tool 
(RoB2) in the Review Manager 5.4.1 (Cochrane Collab-
oration, Oxford, UK) software was used for evaluation 

Table 1 Search start
Focus 
question

What is the accuracy of robot-assisted implant surgery in partially or fully edentulous patients?

PICO Population Adult patients have undergone implant surgery.
Intervention Placing implant using R-CAIS.
Comparison The difference between planned positions and actual positions measured through CBCT
Outcome Implant placement accuracy measured with global platform deviation, global apical deviation, and angular deviation

Databases PubMed (((((((Robotic Surgical Procedures[MeSH Terms]) OR (robot-guided surgery[Title/Abstract])) OR (robotic 
guidance[Title/Abstract])) OR (robotic surgery[Title/Abstract])) OR (surgical robot[Title/Abstract])) OR (robot[Title/
Abstract])) OR (robotic[Title/Abstract])) AND (((dental implants[Title/Abstract]) OR (dental implant[Title/Abstract])) 
OR (oral implantology[Title/Abstract]))
Filters: in the last 10 years

Embase #1 ‘robot assisted surgery’/exp
#2 ‘robotic surgical system’/exp
#3 robotic AND system: ab, kw, ti
#4 (‘robot’/exp OR robot) AND assisted AND surgery: ab, kw, ti
#5 (‘robot’/exp OR robot) AND surgery: ab, kw, ti
#6 ‘tooth implant’/exp
#7 (‘dental”/exp OR dental)AND implant: ab, kw, ti
#8 oral AND implantation: ab, kw, ti
#9 (#1 OR #2 OR #3 OR #4 OR #5) AND (#6 OR #7 OR #8) AND [2014–2024]/py

Cochrane 
CENTRAL

#1 MeSH descriptor: [Robotics] explode all trees
#2 MeSH descriptor: [Robotic Surgical Procedures] explode all trees
#3 (robotic surgery): ti, ab, kw OR (robotic assisted): ti, ab, kw OR (robot): ti, ab, kw
#4 (dental implant): ti, ab, kw
#5 (#1 OR #2 OR #3) AND #4

Search date 27-Oct-24

http://www.greylit.org
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following the guidelines provided by the Cochrane Hand-
book for Systematic Reviews of Interventions (version 
6.0, updated in July 2019), and the assessment covered 
the following domains: (1) random sequence generation 
(selection bias); (2) allocation concealment (selection 
bias); (3) blinding of participants and personnel (perfor-
mance bias); (4) blinding of outcome assessment (detec-
tion bias); (5) incomplete outcome data (attrition bias); 
(6) selective reporting (reporting bias); (7) other bias 
[33]. Prediction model risk of bias assessment tool (PRO-
BAST) defines the overall risk of bias at low, high, and 
unclear levels. The publications were categorized as fol-
lows: (1) low risk of bias: trials with low risk of bias across 
all domains; (2) some concerns: trials that raise concerns 
in at least one domain for this result, without having a 
high risk of bias in any domain; (3) high risk of bias: trials 
with high risk of bias in at least one domain, or trials with 
some concerns in multiple domains significantly reducing 
confidence in the result. Non-randomized interventional 
studies were assessed using the Newcastle-Ottawa Scale 
(NOS) [34]. The NOS explores the risk of bias in three 
domains: selection, comparability, and outcome. Stud-
ies scoring 7‒9 indicate a low risk of bias, while studies 

scoring 5‒6 represent a medium risk. Studies scoring < 5 
are considered to have a high risk of bias.

Statistical analysis
This systematic review was conducted using Review 
Manager 5.4.1 software for quantitative data analysis. 
Global platform deviation, global apex deviation, and 
angular deviation were considered continuous variables 
for assessing the precision of implants. If the studies pro-
vided outcome data divided into subgroups, the means 
and standard deviations (SD) were weighted based on the 
respective subgroup sizes [33].

Firstly, a single-arm meta-analysis of the continuous 
data results was conducted from all the included articles. 
The mean values of each study’s results were calculated 
and analyzed. The 95% confidence intervals (CI) were cal-
culated in this study to assess the maximum deviation, 
which is crucial for preventing damage to vital anatomi-
cal structures. Next, subgroup analyses were performed 
based on different navigation systems, different dental 
arches, and different working principles of camera to 
explore their significant heterogeneity.

Results
Study selection
As shown in the comprehensive search flowchart in Fig. 2 
and 211 articles were retrieved by searching three elec-
tronic databases: 81 articles from PubMed, 118 from 
Embase, and 12 from Cochrane CENTRAL. In addi-
tion, one article was obtained by manually searching 
dental journals. After eliminating duplicates, 150 papers 
remained. By reviewing the titles and abstracts, 128 arti-
cles were excluded, leaving 25 articles. Afterward, 9 arti-
cles were excluded after reading the full texts. Table S1 
[35] presents the reasons for exclusion. The quality of the 
remaining 16 clinical studies was assessed using the RoB2 
and NOS.

Study characteristics
Sixteen articles that primarily focused on the past 
three years were finally included. Table  2 presents the 
study characteristics data. A total of 908 implants were 
included in the analysis, and the study results were evalu-
ated by CBCT. Among the sixteen clinical studies, two 
were randomized controlled trials [24, 36], five were ret-
rospective studies [26, 35, 37–39], five were case series 
[25, 40–43], and four were prospective single-arm studies 
[44–47]. All clinical studies, except for four that did not 
provide this information, reported no intraoperative or 
postoperative complications.

Among the studies included in this review, two RCTs 
[24, 36] compared the accuracy of freehand techniques 
(FH) with R-CAIS, one study compared D-CAIS with 
R-CAIS [37], one study compared FH, S-CAIS, and 

Fig. 1 Accuracy parameters. (a) Angular deviation. (b) Global platform de-
viation. (c) Global apex deviation. The image was created with BioRender.
com
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R-CAIS in the context of immediate anterior tooth 
implants [35], and one study compared S-CAIS, D-CAIS, 
and R-CAIS [46]. Additionally, two study focused on 
comparing S-CAIS with R-CAIS [38, 39]. Regarding the 
autonomous types of surgical robots, ten studies used 
autonomous robots [25, 26, 35, 37–39, 41, 43–45], while 
six used semi-active robots [24, 36, 40, 42, 46, 47]. Seven 
different brands of robotic systems were used. From the 
perspective of dentition statuses in the clinical studies, 
four studies focused on full edentulism [25, 38, 45, 47], 
three investigated patients with single tooth loss [24, 36, 
43], two were conducted on partial edentulism [37, 44]. 
One study simultaneously assessed the implant accuracy 
for single tooth loss and full edentulism [40]. Apart from 
the Yomi based on mechanical tracking, all other robot 

systems’ navigation is based on tracking reflective light, 
with Remebot’s visual system based on visible light and 
the rest of the robot’s visual systems based on infrared 
light.

Quality of studies
The included clinical studies were assessed for qual-
ity. The RoB2 in the Review Manager 5.4.1 software was 
employed to evaluate two RCT studies [24, 36]. As shown 
in Fig. S1, the results indicated that the study met over 
77% of the RoB2 criteria, except for one study uncertainty 
in outcome measurement, all other risks were classified 
as low levels of bias risk. The NOS was used to assess the 
remaining fourteen non-RCT studies with a score range 

Fig. 2 Search flow diagram
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of 6‒9, indicating a low to medium risk of bias [48]. the 
specific scoring details are in Table S2.

Accuracy analysis
In all the included studies, the global platform devia-
tion, global apex deviation, and angular deviation were 
0.69  mm (95% CI: 0.61‒0.77, I2 = 94%), 0.72  mm (95% 
CI: 0.64‒0.79, I2 = 93%), and 1.62° (95% CI: 1.34°‒1.89°, 
I2 = 96%) (Fig. 3).

Subgroup analysis
A subgroup analysis was conducted to compare semi-
active and autonomous robots. The global platform 
deviation, global apex deviation, and angle deviation of 
semi-active robots were 0.81  mm (95% CI: 0.60‒1.01, 
I2 = 96%), 0.83  mm (95% CI: 0.62‒1.04, I2 = 97%), and 
1.81° (95% CI: 1.28°‒2.34°, I2 = 97%), respectively, and 
in the autonomous robots, they were 0.62  mm (95% 
CI: 0.56‒0.68, I2 = 85%), 0.66  mm (95% CI: 0.61‒0.72, 

I2 = 78%), and 1.53° (95% CI: 1.26‒1.79, I2 = 92%), respec-
tively. There was no statistically significant difference 
between semi-active and autonomous robots (P > 0.05) 
(Fig. 4).

A subgroup analysis was conducted to compare 
the dentition statuses. The global platform deviation, 
global apex deviation, and angle deviation of single 
tooth loss were 0.79  mm (95% CI: 0.58‒0.99, I2 = 91%), 
0.84 mm (95% CI: 0.58‒1.09, I2 = 94%), and 1.54° (95% CI: 
0.83°‒2.25°, I2 = 96%), respectively, and in partial eden-
tulism, they were 0.67  mm (95% CI: 0.60‒0.75, I2 = 0%), 
0.68  mm (95% CI: 0.61‒0.76, I2 = 0%), and 1.40° (95% 
CI: 1.20°‒1.60°, I2 = 0%), respectively. In full edentulism, 
these values were 0.65 mm (95% CI: 0.54‒0.76, I2 = 87%), 
0.63  mm (95% CI: 0.56‒0.70, I2 = 81%), and 1.54° (95% 
CI: 1.06°‒2.03°, I2 = 96%). There was no statistically sig-
nificant difference between all the dentition statuses 
(P > 0.05) (Fig. 5).

Fig. 4 Forest plots ofautonomous/semi-active. (a) global platform deviation, (b) global apex deviation, (c) angular deviation. The 95% confidence inter-
vals (CI) were calculated in this study

 

Fig. 3 Forest plots of (a) global platform deviation, (b) global apex deviation, and (c) angular deviation. The 95% confidence intervals (CI) were calculated 
in this study
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A subgroup analysis was conducted to compare differ-
ent robots using infrared rays, visible light, and mechani-
cal tracking as the working principles of cameras. The 
global platform deviation, global apex deviation, and 
angle deviation of robots using infrared rays were 
0.61  mm (95% CI: 0.54‒0.67, I2 = 88%), 0.66  mm (95% 
CI: 0.58‒0.73, I2 = 89%), and 1.77° (95% CI: 1.30°‒2.23°, 
I2 = 98%), respectively, and in the robots using visible 
light, they were 0.69  mm (95% CI: 0.64‒0.73, I2 = 8%), 
0.68  mm (95% CI: 0.61‒0.72, I2 = 0%), and 1.30° (95% 
CI: 1.19°‒1.42°, I2 = 26%), respectively. and in the robots 
using mechanical tracking, they were 1.09 mm (95% CI: 
1.02‒1.17, I2 = 0%), 1.07 mm (95% CI: 0.92‒1.22, I2 = 45%), 
and 1.97° (95% CI: 0.85°‒3.08°, I2 = 95%), respectively. Sta-
tistically significant differences were found in global plat-
form deviation and apex deviation between robots using 
infrared ray and mechanical tracking (p < 0.01, p < 0.01), 
and the global platform deviation and apex deviation 

between robotic utilizing visible light and mechanical 
tracking (p < 0.01, p < 0.01) (Fig.  6). No statistically sig-
nificant differences were found in the other comparisons 
within this subgroup, except the global platform devia-
tion between the robots using infrared rays and visible 
light, which recorded a p-value of 0.05; all other groups 
had p-values greater than 0.05.

Discussion
Since the US Food and Drug Administration (FDA) 
approved the first robotic dental surgical system in 2016, 
research on robot-assisted implants has increased sig-
nificantly [49]. This meta-analysis evaluated the accu-
racy of robot-assisted implants, including a total of 908 
implants across 16 studies. The results indicated that 
the average global platform deviation, global apex devia-
tion, and angle deviation of R-CAIS were 0.69 mm (95% 
CI: 0.61‒0.77, I2 = 94%), 0.72  mm (95% CI: 0.64‒0.79, 

Fig. 6 Forest plots of the working principle of camera. (a) global platform deviation, (b) global apex deviation, (c) angular deviation. The 95% confidence 
intervals (CI) were calculated in this study

 

Fig. 5 Forest plots of state of dentition. (a) global platform deviation, (b) global apex deviation, (c) angular deviation
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I2 = 93%), and 1.62° (95% CI: 1.34°‒1.89°, I2 = 96%), respec-
tively. The upper limit of the 95% confidence interval (CI) 
for the average global apex deviation (0.69 mm) was sig-
nificantly below the clinical requirement of 2 mm for safe 
distance from the inferior alveolar nerve [50]. Previous 
meta-analyses reported the average global platform devi-
ation, global apex deviation, and angle deviation for clini-
cal studies were 0.68  mm (95% CI: 0.570.79), 0.67  mm 
(95% CI: 0.580.75), and 1.69° (95% CI: 1.25°2.12°) [30]. 
Another meta-analysis found similar deviations of 
0.6  mm (95% CI: 0.50.8), 0.7  mm (95% CI: 0.60.8), and 
1.6° (95%CI: 1.1°2.0°) [29]. The findings of this meta-
analysis align with those of previous studies, collectively 
supporting the high accuracy of R-CAIS. This study is 
the first to specifically assess robotic accuracy in clinical 
trials, incorporating twice the number of clinical studies 
compared to prior meta-analyses. It also discusses factors 
influencing robotic systems and patients, including the 
impacts of robot autonomy, dentitions, and visual sys-
tems, with a particular focus on the effect of visual sys-
tems, which is examined for the first time in this review.

The meta-analysis in this study did not reveal signifi-
cant differences between autonomous and semi-active 
implant systems. According to Yang’s classification, 
autonomous surgical robots for dental implants are cat-
egorized as follows: (1) Level 1 (semi-active), where the 
robot provides mechanical guidance while the surgeon 
retains continuous control over aspects like drilling 
speed and force; (2) Level 2 (autonomous), where the 
surgeon’s control over the robot is discrete, allowing the 
robot to perform drilling and implant insertion indepen-
dently [51]. In a model study, implant robots were clas-
sified as active or semi-active based on whether their 
movements were independently controlled or manually 
guided by the surgeon, while those limited to angle lock-
ing were termed passive. This study found no significant 
differences in implant placement accuracy between active 
and semi-active robots. However, passive robots exhib-
ited greater average global platform, apex, and angular 
deviations than active and semi-active types, suggest-
ing that the arm movement method does not affect the 
implant process [52]. Nonetheless, hand tremors from 
manual control can hinder the robotic arm’s autonomous 
adjustments, leading to reduced accuracy. The absence of 
significant differences between autonomous and semi-
autonomous subgroups may be due to the uneven num-
ber of studies, with more data available for autonomous 
systems, and unaccounted heterogeneity factors such as 
study design and robotic brands. These limitations could 
have influenced the results, underscoring the need for 
more balanced study populations and comprehensive 
subgroup analyses in future research to better evaluate 
the impact of robotic autonomy on implant accuracy.

No significant difference was found in the implant 
accuracy of robotic systems across various dentition sta-
tuses. Although the complexity of implant varies with 
dental arch conditions—such as partial edentulism and 
fully edentulous cases, which often face challenges due to 
insufficient residual alveolar bone and lack of stable adja-
cent teeth for guide fixation—this study found no statis-
tically significant differences in accuracy among single 
tooth loss, partial edentulism, and fully edentulism [15]. 
This may be attributed to the high precision of robotic 
systems, which minimizes the impact on various denti-
tion statuses. An in vivo study similarly reported no sig-
nificant accuracy differences between single tooth loss 
and fully edentulism cases with R-CAIS, which is con-
sistent with the findings of this study [40]. In contrast, 
S-CAIS studies have shown higher deviations in fully 
edentulous patients (1.85°-8.4°), potentially due to varia-
tions in surgical guide design and fabrication, whereas 
robotic systems appear less affected by dental status [53–
55]. This study focused solely on dentition statuses but 
did not account for other potentially influential factors, 
such as implant position (anterior vs. posterior) and jaw 
type (maxilla vs. mandible). Therefore, further confirma-
tion of this viewpoint requires large-scale, multi-center, 
randomized, controlled clinical trials.

A comparison of the implant accuracy of different 
robotic systems utilizing infrared ray, visible light, and 
mechanical tracking as the working principles of cam-
eras was conducted. The results indicated statistically 
significant differences in platform and apical deviation 
between the infrared and mechanical haptics groups, as 
well as between the visible light and mechanical haptics 
groups, suggesting that the tracking mechanisms and 
environmental adaptability of different camera prin-
ciples may influence accuracy. No significant difference 
was observed in platform accuracy deviations between 
the infrared and visible light groups (p = 0.05), likely due 
to their similar optical tracking mechanisms. Previous 
research has indicated that haptic robotic-guided implant 
surgery, owing to its tactile feedback mechanisms and the 
high stability of robotic arms, achieved superior accu-
racy compared to dynamic and static navigation systems 
[47]. However, direct comparative studies between haptic 
robots and other vision-based robotic systems are lack-
ing. Additionally, dynamic navigation studies suggest that 
infrared technology may enhance accuracy by reduc-
ing natural light interference, although this hypothesis 
requires further validation [56]. It is important to note 
the significant heterogeneity present in clinical studies, 
where confidence intervals may sometimes be adjusted to 
90% (p < 0.1) [57]. This meta-analysis is the first to discuss 
the impact of robotic visual system principles on implant 
accuracy, although other components, such as robotic 
arms and user interfaces may also influence the overall 
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performance of robotic systems [58]. Future studies with 
larger sample sizes and multi-brand comparative clinical 
trials are needed to further validate these findings.

S-CAIS utilizes surgical templates and specialized 
instruments to improve accuracy by physically restrict-
ing the implant position. However, it has several limita-
tions: (1) Errors can accumulate from CBCT imaging, 
mechanical inaccuracies in 3D-printed templates, and 
mismatches between sleeves and drills [55, 59]. (2) The 
template only restricts the crown side of the drill, allow-
ing for greater deviation at the implant apex [47]. (3) 
The implant strategy cannot be modified intraopera-
tively [60]. D-CAIS uses optical tracking for real-time 
visual guidance, enabling intraoperative adjustments to 
the implantation plan. Nonetheless, there are still some 
drawbacks to consider: (1) Manual intervention is still 
necessary, which can introduce linear errors of up to 
0.25  mm and angular errors of up to 0.5° due to hand 
instability [61]. (2) D-CAIS heavily relies on the surgeon’s 
manipulative skills and requires a learning curve [62, 
63]. (3) Frequent shifts in focus between screens and the 
surgical site may lead to oversight of important details 
or fatigue [23]. R-CAIS combines a real-time dynamic 
optical tracking with a mechanical arm, enabling precise 
control of the drilling axis and achieving high accuracy 
[25]. This study showed superior accuracy of R-CAIS 
compared to conventional S-CAIS andD-CAIS [15, 53]. 
Previous clinical studies have consistently shown R-CAIS 
to be more precise than both S-CAIS and D-CAIS [37, 
38]. Furthermore, a recent clinical study on immediate 
implant placement in the anterior region revealed that 
R-CAIS achieved greater accuracy than both freehand 
techniques and S-CAIS, highlighting the high precision 
of robotic assistance in complex implant procedures [35]. 
The high accuracy of robotic-assisted implant surgery 
holds significant clinical importance. It reduces the risk 
of damage to adjacent critical anatomical structures, such 
as nerves and blood vessels, while optimizing the initial 
stability of implants and promoting osseointegration, 
thereby enhancing long-term success rates [10]. Addi-
tionally, robotic technology minimizes the dependence 
on surgeon experience, improving the reproducibility 
and standardization of surgical procedures [64]. How-
ever, R-CAIS is not without its limitations.

First, in clinical studies of R-CAIS, many factors could 
potentially affect the accuracy of the implants, includ-
ing the quality of CBCT, implant robot systems, operator 
skills, patient bone quality variations, and implant posi-
tions. The errors in CBCT need to be seriously consid-
ered as all implant outcomes are assessed by CBCT. The 
error of CBCT can come from the differences in layer 
thickness, voxel size, and threshold segmentation [48, 
65]. Additionally, implants in CBCT scans can produce 
artifacts, leading to inaccurate imaging and interfering 

with accuracy assessment. Human factors such as the 
operator’s proficiency in capturing images or patient 
movement during imaging can also impact the assess-
ment of implant positions [66]. It is necessary to research 
and explore better measurement methods to reduce 
errors, such as intraoral scanning. Second, the advan-
tages of R-CAIS over D-CAIS remain unclear, as there 
is currently insufficient evidence to support the clinical 
replacement of dynamic navigation by robotic systems 
[30]. More RCTs are needed to provide a comprehensive 
analysis that includes surgical duration, postoperative 
responses, and cost considerations. Third, the prepara-
tion process for R-CAIS is relatively lengthy, involving 
the creation of intraoral guides and the calibration of the 
patient and the robotic arm during the procedure, which 
extends the overall surgical time [67]. Fourth, the opera-
tional workflow of R-CAIS is complex and not yet stan-
dardized, and the learning curve associated with its use 
remains undefined [26].

This review conducted a quality assessment of the 
included clinical studies. Two RCT studies met over 
77% of the RoB2 criteria (Figure S1), with only the out-
come assessment being deemed as unclear levels of bias 
risk out of the 7 criteria [24, 36]. Due to the surgeons 
must be aware of the implant surgical details, it is diffi-
cult to implement blinding for the primary researchers. 
The fourteen non-RCT studies assessed using the NOS 
were found to have a low to medium risk of bias (Table 
S2). The main limitation was the lack of control experi-
ments. In addition, some experiments were not assessed 
by an independent blinded researcher during outcome 
measurements. However, the accuracy of most articles 
on implants is measured repeatedly by one professional 
who evaluates the accuracy, or the average of the results 
measured by two professionals, which to some extent 
improves the reliability of the results. In conclusion, all 
the included studies met the criteria.

The limitations of this review include the insufficient 
number of large-scale, multicenter, randomized, con-
trolled clinical trials on R-CAIS. This review only encom-
passes two RCTs, with the majority being case series of 
lower evidence levels, potentially affecting the validity of 
the meta-analysis [24, 36]. Future research should focus 
on conducting large-scale multicenter RCTs comparing 
S-CAIS, D-CAIS, and R-CAIS to establish the clinical 
advantages of R-CAIS. Additionally, relatively few con-
trol studies were included in the analyses, which pre-
cludes a meta-analysis comparing S-CAIS, D-CAIS, and 
R-CAIS. In addition, the included studies are primar-
ily from Asia, with limited external validity. Besides the 
subgroups discussed in this review, several variables that 
can influence implant accuracy (e.g., the CBCT, types of 
implants, surgical details, and patient bone quality) are 
also worth researching and discussing. The observed 
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high heterogeneity may stem from varying surgical tech-
niques, different types of robotic systems, and the expe-
rience levels of operators. The subgroup analysis in this 
study did not comprehensively encompass and elucidate 
these sources of variability. Future research should focus 
on standardizing these parameters to enhance the reli-
ability and applicability of findings regarding robotic-
assisted dental implant procedures. Currently, robotic 
implant research is in stage 2a of the IDEAL Robotics 
Colloquium proposes recommendations for evalua-
tion during development. There is a lack of randomized 
controlled trials in existing clinical studies, with design 
flaws, reporting biases, methodological heterogeneity, 
limited patient numbers, and surgical team experience 
[28]. Due to incomplete information provided in the 
included article, this review did not include all informa-
tion about different robotic systems such as robotic arms 
or registration methods, and did not obtain all detailed 
surgical data such as CBCT images or surgical time. The 
included studies only reported short-term postoperative 
conditions. Long-term survival rates and complications 
studies are needed to determine the long-term efficacy of 
R-CAIS.

Conclusion
Based on this systematic review, the average global plat-
form deviation, global apex deviation, and angle devia-
tion of the robot in clinical studies were 0.69  mm (95% 
CI: 0.61‒0.77, I2 = 94%), 0.72  mm (95% CI: 0.64‒0.79, 
I2 = 93%), and 1.62° (95% CI: 1.34°‒1.89°, I2 = 96%), respec-
tively. A preliminary conclusion drawn from this study is 
that R-CAIS has high accuracy. Besides the statistical dif-
ferences observed in platform deviation and apical devia-
tion between the infrared and mechanical haptics groups, 
as well as the visible light and mechanical haptics groups, 
no statistically significant differences were observed in 
autonomous vs. semi-active robots, or dentition statuses. 
More large-scale, multi-center, randomized, controlled 
clinical trials are warranted to further compare the dif-
ferences between R-CAIS and S-CAIS or D-CAIS and 
explore more factors influencing R-CAIS.
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