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Abstract 

Background Classification is one of the most common tasks in artificial intelligence (AI) driven fields in dentistry 
and orthodontics. The AI abilities can significantly improve the orthodontist’s critical mission to diagnose and treat 
patients precisely, promptly, and efficiently. Therefore, this study aims to develop a machine‑learning model to classify 
German orthodontic patients as skeletal class I or II based on minimal cephalometric parameters. Eventually, cluster‑
ing analysis was done to understand the differences between clusters within the same or different skeletal classes.

Methods A total of 556 German orthodontic patients were classified into skeletal class I (n = 210) and II (n = 346) 
using the individualized ANB. Hierarchical clustering analysis used the Euclidean distances between data points 
and Ward’s minimum variance method. Six machine learning models (random forest (RF), K‑nearest neighbor (KNN), 
support vector machine (SVM), linear discriminant analysis (LDA), classification and regression trees (CART), and Gen‑
eral Linear Model (GLM)) were evaluated considering their accuracy, reliability, sensitivity, and specificity in diagnosing 
skeletal class I and II.

Results The clustering analysis results showed the power of this tool to cluster the results into two–three clusters 
that interestingly varied significantly in many cephalometric parameters, including NL‑ML angle, NL‑NSL angle, PFH/
AFH ratio, gonial angle, SNB, Go‑Me (mm), Wits appraisal, ML‑NSL, and part of the dental parameters. The CART model 
achieved 100% accuracy by considering all cephalometric and demographic variables, while the KNN model per‑
formed well with three input parameters (ANB, Wits, SNB) only.

Conclusions The KNN model with three key variables demonstrated sufficient accuracy for classifying skeletal classes 
I and II, supporting efficient and still personalized orthodontic diagnostics and treatment planning. Further studies 
with balanced sample sizes are needed for validation.
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Introduction
Orthodontics is pivotal in diagnosing physiological and 
pathological jaw positions, necessitating precise classifi-
cation of skeletal class. Due to their high prevalence, the 
distinction between skeletal class I and II malocclusion 
is, particularly, interesting to the orthodontist [1]. Effec-
tive treatment planning relies on precisely diagnosing the 
relationship between the maxilla and mandible, essential 
for devising tailored treatment strategies [1]. Hence, as 
in all medical disciplines, the orthodontic practitioner 
needs to perform precise and correct diagnostics and 
evaluate each patient’s orthodontic treatment needs indi-
vidually [2]. Dysgnathia, characterized by abnormal jaw 
relationships, demands individualized approaches, rang-
ing from functional appliances for growing patients to 
surgical-orthodontic interventions for adults [3, 4].

Orthodontic diagnostics entail comprehensive assess-
ments, including patient history, clinical examinations, 
dental cast analyses, and radiographic evaluations, such 
as orthopantomograms and lateral cephalograms [5]. 
Cephalometric analysis serves as a cornerstone, facilitat-
ing the classification of skeletal patterns and delineating 
the sagittal relationship between the maxilla and man-
dible [6]. The prevalence of skeletal classes varies across 
populations, underscoring the importance of accurate 
diagnosis tailored to specific demographic profiles [6].

Clinical implications in using the standard of care 
diagnosis methods vs. artificial‑intelligence methods
There are various methods to define a patient’s skeletal 
class, including ‘classical’ approaches such as the ANB 
angle described by Riedel and others [7, 8]. A study that 
was performed by Wellens et  al. [9], and examined the 
ANB angle. The Wits appraisal performance found that 
the volume under the resulting ROC (Receiver Operating 
Curve) surfaces (VUS), found that the diagnostic perfor-
mance of the conventional ANB and Wits was 81.1% for 
class I, and 80.75% for class II (P > 0.05), while when nor-
malizing the measurements, the performance improved 
significantly to 91%, and 87.2%, respectively (P < 0.001).

Besides, there are individualized techniques like the 
graphical procedure suggested by Fishman [10], the har-
mony box established by Segner and Hasund [11, 12], or 
the individualized ANB, which was introduced by Pana-
giotidis and Witt [13]. Traditionally, skeletal class deter-
mination relied on empirical norms, often leading to 
diagnostic inaccuracies due to neglecting individual cran-
iofacial harmonies [13–15]. Furthermore, the individual-
ized equations were based on specific ethnic populations, 
like the individualized ANB, which was introduced 
by Panagiotidis and Witt [13], which was based on 121 
patients from the Orthodontics Department in Würz-
burg, and the recently published study by Paddenberg 

et al. [16], which was based on 71 Caucasians males and 
females, and aimed to improve the regression formula 
of the individualized ANB angle and Wits appraisal. In 
addition, the individualized equations didn’t fit all the 
cases included in these equations. For example, the r 
correlation coefficient that was reported by Panagiotidis 
and Witt [13] was r = 0.808, while the study of Padden-
berg et al. [16] reported corrected R2 = 0.690 for the indi-
vidualized ANB, and almost perfect corrected R2 = 0.984 
for the individualized Wits appraisal. In summary, the 
complexity and variability of cephalometric techniques 
necessitate innovative solutions to improve diagnostic 
accuracy. In recent years, artificial intelligence (AI), par-
ticularly machine learning (ML), has emerged as a prom-
ising tool to enhance orthodontic diagnostics [17–20]. 
ML models offer the potential to analyze cephalometric 
data efficiently, aiding in landmark detection and treat-
ment planning [17–20]. Nonetheless, the optimal ML 
model for skeletal class diagnosis remains elusive, with 
variations in performance across different populations 
and datasets [18]. While previous research has explored 
the application of ML models to classify skeletal classes 
in various populations, comprehensive studies focusing 
on German cohorts have been scarce [21–23]. This study 
endeavors to bridge this gap by establishing an ML model 
specifically tailored to accurately classify German ortho-
dontic patients into skeletal Class I or II [21–23].

Recently, we evaluated skeletal class II and III patients 
among the Arab population [24] by establishing a 
machine-learning model for diagnosing skeletal class II 
and III. We also evaluated skeletal class I and II machine-
learning models [25]. Hence, the primary aim of this 
prospective, multi-centric cross-sectional study was to 
establish a robust machine learning model to classify 
German orthodontic patients as class I or II correctly 
and to overcome the limitations of the traditional meth-
ods, especially borderline cases that can be misclassified. 
Furthermore, in this study, we will validate the machine-
learning models applied to Arab patients and thus gener-
alize these models to more than one ethnic group and the 
general population.

Material and methods
Ethical statement
Before collecting the samples, this investigation received 
ethical approval from the University of Regensburg 
(approval number 19–1596-101, 13/11/2019). The 
recruitment of patients considered orthodontic patients 
of several German specialist offices and the department 
of orthodontics of the University Hospital Regensburg, 
Germany, only. The declarations of Helsinki and the ethi-
cal guidelines approved by the university’s committee 
were complied with during the study.
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All patients over 18 years old or parents/guardians of 
those younger than 18 agreed to participate in this quan-
titative, observational study after receiving detailed infor-
mation and signing a corresponding informed consent 
form.

Data recruitment and cephalometric analysis
This study was based on the pre-treatment lateral cepha-
lograms of German orthodontic patients, which were 
taken as part of their routine orthodontic diagnostics. 
During data recruitment, the following inclusion and 
exclusion criteria were applied. Inclusion criteria were 
the availability of a pre-treatment lateral cephalogram 
with a caliper for calibration, demographic information 
(age, gender), and the presence of either skeletal class I 
or II, as diagnosed by the individualized ANB of Pana-
giotidis and Witt. Patients with skeletal class III were 
excluded from this study. Applying cephalometric analy-
sis, patients were stratified into the skeletal classes I and 
II. Furthermore, within each group, age and gender-
specific subgroups were built according to the following 
criteria:

Lateral cephalograms were, if necessary, digitized, 
imported as lossless TIF files into the software ivoris® 
analyze pro (Computer konkret AG, Falkenstein, Ger-
many, version 8.2.15.110), and calibrated. Then, the 
method described by Panagiotidis and Witt was used to 
determine each individual’s skeletal class and to allocate 
patients into the groups class I and class II:

– Individualized  ANBPanagiotidis & Witt [13] = −35.16 + 
(0.4 × SNA) + (0.2 × ML-NSL).

– Calculated_ANB =  ANBmeasured—ANBindividualized

To avoid distortion of the data by the inclusion of bor-
derline cases, we applied slightly extended limits com-
pared to the definitions of ± 1°, suggested in the original 
publication:

– Skeletal class I: −1.5° ≤ Calculated_ANB ≤ 1.5°
– Skeletal class II: Calculated_ANB > 1.5°
– Skeletal class III: Calculated _ANB < −1.5°

Then, a complete cephalometric analysis, which was 
similar to the one of Segner and Hasund [9, 10], was con-
ducted, evaluating skeletal sagittal, skeletal vertical, and 
dental parameters, which are listed and defined in Sup-
plementary Table  1  and presented in Supplementary 
Fig. 1A-B.

After calibration, all cephalometric analyses were 
conducted by two trained raters (SK, EPS). To 
ensure reproducible cephalometric measurements, 

interrater- and intrarater-reliability were verified before 
the main investigation. For this purpose, 50 cephalo-
metric images were randomly chosen and analyzed by 
two independent raters (SK, EPS). Intrarater-reliability 
was assessed by the same investigator’s repeated analy-
sis of the lateral cephalograms with a time interval of 
at least two weeks to avoid bias. Applying the test–
retest-technique, interrater and intrarater reliability 
proved almost perfect, indicated by ranges between 
0.92 to 0.99 and 0.90 to 0.99, respectively. Cephalomet-
ric measurements were also made to prepare the data 
set for the primary outcome of this study, i.e., for the 
establishment of machine learning models for diagnosis 
of skeletal class I and II.

Clustering analysis
The clustering algorithm included skeletal class I occlu-
sion and skeletal class II malocclusion patients and 
then separately for every skeletal class. A scatter plot 
and dendrogram were produced using the R statistical 
program to implement the visualization of the cluster 
analysis results.

In all our clustering calculations, we used the Ward 
error sum of squares hierarchical clustering described 
by Ward in 1963 [26]. In this section, we performed 
hierarchical clustering analysis and decided on the 
number of clusters according to the dendrogram result. 
It was acceptable to present the current results with k = 
2, and 3 clusters. The same analysis was performed for 
skeletal class I and II separately.

Machine learning models
Different machine learning models were applied regard-
ing the number of input variables and the kind of model 
to identify the best-fitting and most relevant predicting 
variables. The tested models included random forest 
(RF), K-nearest neighbor (KNN), support vector machine 
(SVM), linear discriminant analysis (LDA), classification 
and regression trees (CART), and General Linear Model 
(GLM).

RF is a machine learning model that combines the results 
of several independent decision trees by bagging, i.e., by 
weighing all single results concerning predefined criteria. 
Within each decision tree different criteria are applied, 
chosen randomly, and hence vary between trees [27].

In the KNN method, a new, unknown data point is 
classified by determining the category of the closest 
neighboring data points, called K-points, which have 
been categorized in the predefined data set in advance. 
K refers to the number of neighboring data points con-
sidered in this classification process. During machine 
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learning model testing, the value of “k” was chosen based 
on the model’s performance, as the “k” resulting in the 
highest accuracy was selected.

SVM attributes new data points to one of the prede-
fined classes by separating the known data set into groups 
using a borderline, which is constructed to present the 
most significant distance to the predefined categories.

In the context of classification, the principle of LDA 
is the identification of a linear correlation between vari-
ables, which are appropriate to discriminate a data set, 
and the allocation of new data points into one of the pre-
defined groups. For this purpose, linear discriminants 
are determined, which maximize the distance between 
separate classes and minimize the variance within each 
class. In CART, binary decision trees are used to clas-
sify new data points by applying predefined numbers and 
orders of independent variables. Finally, the GLM model 
is defined by three components: a linear regression equa-
tion, a specific error distribution, and a link function, 
which is the transformation that links the predicted val-
ues to the observed values [28]. Generalized linear mixed 
models extend linear mixed models to address noncon-
tinuous responses, such as binary responses [29].

Data analysis
Interrater- and intrarater reliability were verified using 
the test–retest method. All other statistical analyses were 
performed with the R software platform (https:// www.r- 
proje ct. org/). Finally, 390 patients (70.1%) of the total 
study collective were used to determine the performance 
of the different machine learning models regarding their 
accuracy, kappa, sensitivity, and specificity. Each model’s 
best-fitting machine learning model (RF, KNN, SVM, 
LDA, CART) (general model, models 1 to 3) was vali-
dated in classifying patients as class I or II by conducting 
the k-fold cross-validation with k equaling 10.

Statistical significance and high significance were set at 
p < 0.05 and 0.01, respectively.

Data validation
The best fitting model, which was assessed using mean 
accuracy in the cross-validation process, was validated 
using the unseen set and included 30% of the data by 
comparing the actual skeletal class diagnosis with the 
machine learning model and calculating sensitivity and 
specificity. The results were visualized as a confusion 
matrix.

Results
Patients
This study comprised 556 German orthodontic patients 
stratified into the skeletal class II (n = 210) and I (n = 

346). Both groups presented a mean age of 13 years with 
a range of 6.6 to 41 years and 5.4 to 53 years in classes 
I and II, respectively. Further details concerning the 
demographic information (age, gender) and the patients’ 
distribution to the different subgroups are shown in Sup-
plementary Table 2A. Supplementary Table 2B shows the 
cephalometric measurements of patients with skeletal 
class I and II.

Borderline cases
The current study categorized patients as skeletal class 
I when the Calculated_ANB was in the range −1.5—+ 
1.5 instead of −1—+ 1. At the same time, skeletal class 
II patients were determined to be as Calculated_ANB 
greater than + 1.5 instead of greater than + 1. In the cur-
rent analysis, 47 patients were in the range of −1.48 up 
to −1.02 and should be categorized as skeletal class III, 
according to the original definition; however, they were 
classified as skeletal class I. In addition, 59 patients were 
in the range of + 1.02 up to + 1.5. They should have been 
categorized as skeletal class II according to the original 
definition, but they were categorized finally as skeletal 
class I.

Clustering analysis
Initially, we included all parameters for the hierarchi-
cal clustering process and performed the analysis for 
the whole data. When applying two clusters to our data, 
Ward’s method results showed that cluster 1 consisted 
of 299 mixed skeletal class I and II patients. Cluster 2 

Table 1 Shows the hierarchical clustering results summary 
according to their skeletal classification (I/II). Summary of 
hierarchical Ward clustering results when using all variables. 
This table presents the number of patients in each cluster and 
their classification (clustering for both skeletal classification 
class I and II), in addition to the number of patients within each 
cluster when performing the clustering separately for each 
class, independently 

Patients Included Cluster Class Calculated ANB Total

I II

All 1 199 100 299

2 147 110 257

Total 556

 Class I 1 105 ‑ 105

2 94 ‑ 94

3 147 ‑ 147

Total 346

 Class II 1 ‑ 88 88

2 ‑ 122 122

Total 210

https://www.r-project.org/
https://www.r-project.org/
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comprised 257 skeletal class I and II patients (Table 1 & 
Supplementary Fig.  3).  The results of the clustering  of 
both skeletal class I and II,  interestingly variated signifi-
cantly in many cephalometric parameters, as presented 
in Table 2. 

We repeated the same clustering analysis with skel-
etal classes I and II, separately. Among skeletal class I 
patients, three clusters analysis was acceptable according 
to the dendrogram (Supplementary Fig.  4). The Ward’s 
method results showed that Cluster 1 comprised 105 
patients, compared to 94 in Cluster 2 and 147 in Clus-
ter 3. In addition, the three clusters of class I varied sig-
nificantly in the cephalometric parameters, and among 
these parameters were the most critical parameters for 

diagnosing skeletal malocclusion ANB, Calculated_ANB, 
and Wits appraisal; detailed information is available in 
Table 3. 

Lastly, the skeletal class II dendrogram revealed that 
two cluster analyses were suitable for presenting the 
differences between the clusters within skeletal class 
II patients (Supplementary Fig.  5). The Ward’s method 
results showed that cluster 1 consisted of 88 patients, 
compared to 122 in cluster 2, as shown in Table  1 and 
Supplementary Fig.  5. In addition, the two clusters 
interestingly varied significantly in many cephalomet-
ric parameters- NL-ML angle, PFH/AFH ratio, Gonion 
angle, Go-Me (mm), ML-NSL, −1/NB angle, −1/NB 
(mm), and interincisal angle, as presented in Table 4.

Machine learning models
Several machine learning models were evaluated regard-
ing accuracy, reliability (kappa), sensitivity, and speci-
ficity in correctly classifying a patient as skeletal class I 
or II based on several input variables, including cepha-
lometric and demographic (age, gender). First, all input 
variables (general model) were used to determine the 
performance of the models LDA, CART, KNN, SVM, RF, 
and GLM, which reached a mean accuracy of 95.64%, 
100.0%, 88.24%, 93.38%, 99.74%, and 95.64%, respectively 
(Fig. 1-I). Then, the importance of each input variable on 
the machine learning model was evaluated using the RF 
model (Fig. 1-II). As evident from Fig. 1-II, the most criti-
cal variable was Calculated_ANB, followed by ANB and 
Wits appraisal. Finally, the sensitivity and specificity of 
the best models (CART, and RF) were tested, and accord-
ing to Fig. 1-III, the model led to perfect sensitivity and 
specificity. The RF model was chosen for the calculations 
shown in Fig. 1-II and III due to its high accuracy (100%) 
compared to the other machine learning models.

Based on the findings in Fig.  1-II, further machine-
learning models were established and evaluated con-
cerning their accuracy, reliability (kappa), sensitivity, and 
specificity. In detail, the number of input variables was 
reduced by selecting only the most essential parameters, 
according to Fig. 1-II. Hence, models 1, 2, and 3 consisted 
of one, two, and three input variables, respectively, deter-
mined by the stepwise forward method (excluding the 
Calculated_ANB), starting at ANB. Thereby, three more 
models were generated and evaluated, which is summa-
rized in Table 5.

According to the results presented in Table 5, the high-
est accuracy and reliability (kappa) was achieved with the 
general model (100%), but considering ANB only (model 
1) resulted in an accuracy of 82.6% and a kappa of 62.7%. 
Adding the Wits appraisal (model 2) led to better perfor-
mance of the machine learning model, although remark-
ably better values than model 1 were noticed in model 3. 

Table 2 Shows the results of the hierarchical clustering analysis 
for skeletal class I and II patients together. Cephalometric 
parameters and age, descriptive statistics (mean, and standard 
deviation (SD)) for each cluster. Besides, the table presents the 
significance levels between the two clusters using t test analysis 
(NS—not significant, * < 0.05, and ** < 0.01)

Parameter Class I & II Malocclusion

Cluster 1 Cluster 2

Mean SD Mean SD Sig t test

Age 12.90 3.87 13.15 6.31 NS

NL‑ML angle [°] 21.44 5.05 25.96 5.87 **

NL‑NSL angle [°] 6.35 3.05 9.40 3.39 **

PFH/AFH (%) 69.86 4.10 63.33 4.00 **

Gonial angle [°] 119.39 5.94 123.90 6.19 **

Facial axis 91.24 3.92 87.89 4.32 **

SNA angle [°] 83.21 2.91 78.94 2.90 **

SNB angle [°] 78.56 2.79 74.24 2.46 **

ANB angle [°] 4.66 1.80 4.71 2.33 NS

ANBind [°] 3.68 1.34 3.49 1.48 NS

Calculated_ANB (ANB 
–  ANBind) [°]

0.97 1.64 1.20 1.65 NS

SN‑Ba angle [°] 130.19 4.41 134.47 4.21 **

SN‑Pg angle [°] 79.66 2.69 75.12 2.54 **

S–N (mm) 75.00 71.28 66.31 4.38 NS

Go‑Me (mm) 74.94 67.54 65.24 5.33 *

Wits appraisal (mm) 2.00 3.96 0.71 4.89 **

ML‑NSL angle [°] 27.79 4.69 35.38 4.90 **

 + 1/NL angle [°] 68.05 10.46 70.75 6.79 **

 + 1/SNL angle [°] 74.40 10.53 80.15 7.15 **

 + 1/NA angle [°] 22.38 10.60 20.90 7.09 NS

 + 1/NA (mm) 3.71 5.44 2.73 2.51 **

−1/ML (anatomic) 81.22 6.57 83.90 7.50 **

−1/NB angle [°] 25.12 6.99 25.72 7.30 NS

−1/NB (mm) 4.44 6.13 4.27 2.58 NS

Interincisal angle [°] 127.84 13.84 128.67 11.27 NS
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Here, adding the Wits appraisal and SNB resulted in an 
accuracy of 90.53% and a kappa of 79.53% in the KNN 
model.

In Fig. 2, the performance of model 1, which included 
ANB only, is demonstrated. Among the different mod-
els tested, KNN showed the highest accuracy and kappa 
(Fig.  2-I). In contrast to the perfect sensitivity and 
specificity (100%) achieved in the general model, those 
parameters were lower in model 1, i.e., 86.4% and 69.8%, 
respectively, illustrated in Fig. 2-II.

The accuracy, kappa, sensitivity, and specificity of 
model 2, in which ANB and Wits appraisal were consid-
ered, are presented in Fig. 3. The best accuracy and reli-
ability were reached by the model KNN (Fig.  3-I), and 
sensitivity (88.3%) and specificity (76.2%) were slightly 

higher than in model 1 (Fig.  3-II). In model number 3, 
which incorporated the parameters ANB, Wits appraisal, 
and SNB, the best-fitting model was KNN (Fig.  4-I). 
Sensitivity and specificity reached 87.38% and 79.37%, 
respectively, which could be a more evident improvement 
than model 2 (Fig.  4-II). Finally, we applied a machine-
learning model (model 4) that included the parameters 
that define the ANB angle and the Calculated_ANB 
defined by Panagiotidis and Witt [13] (i.e., SNA, SNB, 
and ML-NSL angles). This model demonstrated a signifi-
cant improvement in accuracy, up to 99.48% in the GLM 
model (Table 5). The GLM model showed perfect sensi-
tivity in the validation data (100%), and almost perfect 
specificity (98.41%) (Fig. 5I-II).

Table 3 Shows the results of the hierarchical clustering analysis for skeletal class I patients. Cephalometric parameters, and age, 
descriptive statistics (mean, and standard deviation (SD)) for each cluster. Besides, the table presents the significance levels between 
the three clusters using ANOVA test (NS—not significant, * < 0.05, and ** < 0.01). The three clusters of class I varied significantly in the 
cephalometric parameters, and among these parameters were the most critical parameters for diagnosing skeletal malocclusion ANB, 
Calculated_ANB, and Wits appraisal

Parameter Class I ‑Occlusion

Cluster 1 Cluster 2 Cluster 3

Mean SD Mean SD Mean SD Sig ANOVA

Age 13.03 5.22 12.11 2.50 13.45 3.66 NS

NL‑ML angle [°] 24.00 5.38 28.66 5.04 20.94 4.23 **

NL‑NSL angle [°] 9.54 2.85 7.01 3.22 6.00 3.50 **

PFH/AFH (%) 64.59 3.96 63.48 3.97 70.49 4.00 **

Gonial angle [°] 123.12 5.62 126.05 5.38 120.33 5.14 **

Facial axis 89.13 3.93 88.10 4.13 92.65 3.59 **

SNA angle [°] 77.88 3.03 81.47 2.44 83.81 3.02 **

SNB angle [°] 75.11 2.32 76.46 2.11 80.32 2.15 **

ANB angle [°] 2.77 1.38 5.00 1.16 3.49 1.46 **

ANBind [°] 2.70 1.22 4.54 1.16 3.75 1.24 **

Calculated_ANB (ANB – 
 ANBind) [°]

0.07 0.85 0.41 0.78 −0.26 0.75 **

SN‑Ba angle [°] 133.77 4.36 132.01 4.54 129.88 4.77 **

SN‑Pg angle [°] 76.23 2.54 76.90 2.12 81.35 2.11 **

S–N (mm) 66.62 4.68 79.67 91.64 66.90 4.30 NS

Go‑Me (mm) 66.01 5.52 78.63 89.69 68.36 5.30 NS

Wits appraisal (mm) −0.55 2.26 0.30 5.26 0.33 2.08 *

ML‑NSL angle [°] 33.56 4.66 35.67 5.09 26.93 4.29 **

 + 1/NL angle [°] 72.25 6.83 67.08 6.47 65.91 8.62 **

 + 1/SNL angle [°] 81.80 6.45 74.09 6.16 71.91 8.38 **

 + 1/NA angle [°] 20.32 7.49 24.44 6.52 24.27 8.61 **

 + 1/NA (mm) 2.90 2.56 4.90 6.68 4.05 2.56 NS

−1/ML (anatomic) 87.49 6.91 82.57 5.66 81.99 6.19 **

−1/NB angle [°] 21.18 6.77 29.56 4.70 25.27 6.49 **

−1/NB (mm) 2.66 2.17 6.75 6.72 3.64 2.10 NS

Interincisal angle [°] 135.74 12.19 120.99 8.74 126.97 10.82 **
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Discussion
Our study aimed to reveal new information about Ger-
man orthodontic patients using hierarchical clustering 
and machine learning methods to correctly classify indi-
vidual orthodontic patients as skeletal class I or II, testing 
different models in terms of the type of machine learning 
(RF, KNN, SVM, LDA, CART) and input data (general 
model, models 1 to 3).

The first step in this study was to perform hierarchi-
cal clustering that revealed distinct characteristics for 
each cluster within all data and for each patient group 

(skeletal class I/II) separately, based on various cephalo-
metric parameters. We found that among skeletal class 
I patients, it’s acceptable to apply three clusters analysis. 
The Ward’s method results showed that Cluster 1 was 
comprised of 105 patients, compared to 94 in Cluster 2 
and 147 in Cluster 3. In addition, the three clusters of 
class I variated significantly in the cephalometric param-
eters, and among these parameters were the most criti-
cal parameters for the diagnosis of skeletal malocclusion 
ANB, Calculated_ANB, and Wits appraisal.

Skeletal class II dendrogram revealed that the two 
clusters analysis was good for presenting the differences 
between the clusters within skeletal class II patients. The 
Ward’s method results showed that cluster 1 consisted 
of 88 patients, compared to 122 in cluster 2. In addi-
tion, the two clusters interestingly variated significantly 
in many cephalometric parameters- NL-ML angle, PFH/
AFH ratio, Gonion angle, Go-Me (mm), ML-NSL, −1/
NB angle, −1/NB (mm), and interincisal angle. A study 
of Uribe et al. about phenotypic diversity in white adults 
with Class II malocclusion found that models with 2, 3, or 
4 clusters were statistically acceptable. Still, they identi-
fied five distinct Class II phenotypes [30]. Another study 
that applied Cluster analysis to Class I occlusion found 
that the grouping pattern in Class I occlusion is shown 
in younger age levels and disappears with age. Also, they 
found that the clustering pattern is very similar in males 
and females with Class I [31].

The machine learning models analyzed varied in terms 
of the input variables (general model, models 1 to 3) and 
the technical method (LDA, CART, KNN, SVM, RF, and 
GLM), resulting in different performances, which was 
measured by mean accuracy, kappa, sensitivity, and spec-
ificity. In the general model, the highest accuracy (100%) 
and kappa (100%) were achieved by the CART model, 
and almost by the RF model (Accuracy = 99.74%, Kappa 
= 99.45%), whereas KNN was the best fitting model 
for models 1 (ANB only), model 2 (ANB, and Wits), 
and model 3 (ANB, Wits and SNB). Finally, in model 4 
(SNA, SNB, and Wits), the GLM model demonstrated 
almost perfect accuracy (99.48%), and Kappa (98.89%). 
Thus, depending on the input variables and the desired 
outcome, different models should be applied to achieve 
the best performance. For example, in another study 
that was done by Zhou et al. 2023 [32], which was con-
ducted to automatically determine an individual’s skeletal 
class and vertical facial growth using image processing, 
feature engineering, grid search, and cross validation, 
and nine different machine learning models were tested 
(KNN, Gaussian NB, the multi-layer perceptron (MLP), 
linear SVM, Gaussian process classifier, extreme gra-
dient boosting, adaptive boosting, quadratic discrimi-
nant analysis, RF): whereas the model MLP was the best 

Table 4 Shows the results of the hierarchical clustering analysis 
for skeletal class II patients—cephalometric parameters, and 
age, descriptive statistics (mean and standard deviation (SD)) for 
each cluster. Besides, the table presents the significance levels 
between the two clusters using t‑test analysis significance levels 
of comparisons between the two clusters for each parameter 
(NS—not significant, * < 0.05, and ** < 0.01). The two clusters 
interestingly variated significantly in many cephalometric 
parameters‑ NL‑ML angle, PFH/AFH, gonial angle, Go‑Me (mm), 
ML‑NSL, −1/NB angle, −1/NB (mm), and interincisal angle

Parameter Class II Malocclusion

Cluster 1 Cluster 2

Mean SD Mean SD Sig t test

Age 12.67 4.70 13.44 7.73 NS

NL‑ML angle [°] 18.80 4.73 25.72 5.21 **

NL‑NSL angle [°] 7.19 3.24 9.33 3.31 **

PFH/AFH (%) 71.31 3.61 63.74 4.01 **

Gonial angle [°] 114.85 5.13 122.70 6.12 **

Facial axis 90.92 3.49 86.96 4.23 **

SNA angle [°] 81.98 3.44 80.32 2.90 **

SNB angle [°] 76.23 2.56 73.59 2.63 **

ANB angle [°] 5.75 1.49 6.73 1.63 **

ANBind [°] 2.83 1.36 3.98 1.26 **

Calculated_ANB (ANB 
–  ANBind) [°]

2.92 1.12 2.75 1.05 NS

SN‑Ba angle [°] 131.24 4.46 134.35 4.29 **

SN‑Pg angle [°] 77.92 2.32 74.39 2.70 **

S–N (mm) 66.73 5.96 76.04 77.36 NS

Go‑Me (mm) 66.45 6.51 73.40 70.94 NS

Wits appraisal (mm) 4.10 2.68 3.28 6.37 NS

ML‑NSL angle [°] 25.99 3.89 35.06 4.67 **

 + 1/NL angle [°] 71.63 13.35 70.86 7.31 NS

 + 1/SNL angle [°] 78.83 13.79 80.19 7.88 NS

 + 1/NA angle [°] 19.19 13.76 19.48 7.35 NS

 + 1/NA (mm) 1.87 4.03 2.33 4.75 NS

−1/ML (anatomic) 79.56 7.19 80.70 7.29 NS

−1/NB angle [°] 22.66 7.40 27.96 6.77 **

−1/NB (mm) 3.08 2.11 5.79 6.96 **

Interincisal angle [°] 132.41 17.35 125.83 9.32 **
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fitting model for the diagnosis of skeletal class (97.56% 
accuracy), the model linear SVM achieved the highest 
accuracy (90.24%) in determining an individual’s verti-
cal facial pattern [32]. Further investigations revealed 
not only perfect accuracy and reliability, but also 100% 
sensitivity and specificity for the general CART, and RF 
models. Besides the perfect performance of the general 

model, attempts were made to simplify the model by 
reducing the number of input variables choosing the 
most important ones. Hence, in the general model, fur-
ther analyses revealed Calculated_ANB, ANB, Wits 
appraisal and SNB to be the most important variables 
for the machine learning model. However, according to 
this analysis sagittal parameters, including the mandible’s 

Fig. 1 Evaluation of a general machine learning model, which included all cephalometric and demographic variables (gender, age). 1‑I: Accuracy 
and reliability (kappa) of different machine learning models (RF, KNN, SVM, LDA, CART, GLM), The X‑axis shows the Accuracy and Kappa scores 
(95% confidence interval), for each model. 1‑II: Importance of each parameter in the machine learning model (RF), X‑axis shows the prediction 
importance score of the assessed parameters. Y‑axis shows the list of the assessed parameters. 1‑III: Confusion matrix to demonstrate the sensitivity 
and specificity of the RF model in classifying patients as skeletal class I or II. The X‑axis shows the class prediction, and the Y‑axis shows the number 
of identified patients in each classification

Table 5 Machine‑learning models results

Performance of five machine learning models (general, 1, 2, 3, 4) in diagnosing skeletal I or II. The best‑fitting model in terms of accuracy and kappa is reported for 
each model

Model Best model Hyperparameters Cross validation accuracy Cross validation kappa Validation 
sensitivity

Validation 
specificity

General model: all cepha‑
lometric and demographic 
parameters

CART, RF CART = 100%, RF = 99.74% CART = 100%, RF = 99.45% 100% 100%

Model 1: ANB KNN K = 9 82.55% 62.71% 86.41% 69.84%

Model 2: ANB + Wits KNN K = 9 86.6% 71.42% 88.35% 76.19%

Model 3: ANB + Wits + SNB KNN K = 7 90.53% 79.53% 87.38% 79.37%

Model 4: SNA + SNB + ML‑NSL GLM 99.48% 98.89% 100% 98.41%
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Fig. 2 Evaluation of the machine learning model 1 (ANB only). 2‑I: different models were tested (RF, KNN, SVM, LDA, CART, GLM), The X‑axis 
shows the Accuracy and Kappa scores (95% confidence interval), for each model. 2‑II: sensitivity and specificity of the best fitting model 1 
(KNN) in diagnosing skeletal class I and II. The X‑axis shows the class prediction, and the Y‑axis shows the number of identified patients in each 
classification

Fig. 3 Evaluation of the machine learning model 2 (ANB + Wits). 3‑I: different models were tested (RF, KNN, SVM, LDA, CART, GLM), The X‑axis 
shows the Accuracy and Kappa scores (95% confidence interval), for each model. 3‑II: sensitivity and specificity of the best fitting model 2 
(SVM) in diagnosing skeletal class I and II. The X‑axis shows the class prediction, and the Y‑axis shows the number of identified patients in each 
classification
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Fig. 4 Evaluation of the machine learning model 3 (ANB + Wits + SNB). 4‑I: different models were tested (RF, KNN, SVM, LDA, CART, GLM), The 
X‑axis shows the Accuracy and Kappa scores (95% confidence interval), for each model. 4‑II: sensitivity and specificity of the best fitting model 3 
(KNN) in diagnosing skeletal class I and II. The X‑axis shows the class prediction, and the Y‑axis shows the number of identified patients in each 
classification

Fig. 5 Evaluation of the machine learning model 4 (SNA + SNB + ML‑NSL). 5‑I: different models were tested (RF, KNN, SVM, LDA, CART, GLM), The 
X‑axis shows the Accuracy and Kappa scores (95% confidence interval), for each model. 5‑II: sensitivity and specificity of the best fitting model 3 
(KNN) in diagnosing skeletal class I and II. The X‑axis shows the class prediction, and the Y‑axis shows the number of identified patients in each 
classification
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degree of prognathism (SNB), appear to dominate verti-
cal ones in the diagnosis of skeletal class I and II.

Comparing the models 1, 2, 3 and 4, the increase in 
performance between model 1 and 2 (+ 4.05% accu-
racy) can be regarded as rather irrelevant, whereas the 
rise observed between models 1 and 4 (+ 16.93% accu-
racy) appears to be more clinically relevant. Comparing 
validation of the different models, sensitivity and speci-
ficity varied between models 1 to 4: the highest sensitiv-
ity, and specificity were received in model 4 (Sensitivity 
= 100%, Specificity = 98.41%). Thus, evaluating all five 
models, model 4, which considers SNA, SNB and ML-
NSL, could be applied in daily routine, because of the 
noticeable reduction in input information and still high 
and precise performance. Our results in this study over-
come the results that were recently published by Midlej 
et al. [25], that included orthodontic Arab skeletal class I, 
and II patients, found that machine-learning model that 
included all parameters for patient classification showed 
a classification accuracy of 0.87 in the RF model, and the 
Classification and Regression Tree models. The same 
study also found that using ANB angle and Wits appraisal 
only gained an accuracy of 0.78 [25].

This study considered only German orthodontic 
patients to account for differences in cephalometry due 
to ethnicity. During patients’ recruitment, ancestry was 
not asked for, which might have resulted in a study col-
lective that consists of other ethnic groups too. However, 
due to the German location of all study centers a German 
population can be assumed. Another limitation might be 
the heterogeneity in numbers of the two groups and the 
subgroups within each class. This factor can be explained 
by the methods applied, since patients were retrospec-
tively allocated into specific (sub) groups. Future inves-
tigations, however, should aim to match the numbers 
across different (sub) groups. Also, potential errors in 
the identification of reference landmarks during cephalo-
metric analysis might be considered as a limiting factor. 
But, according to statistical tests, high interrater and int-
rarater reliability have been proven in advance, allowing 
for reproducible measurements. Although, this is not the 
first study in this field, however, it’s to our knowledge it’s 
the first to be done on German population, and because 
of the variance between ethnic groups, it’s crucial to vali-
date these models on this population. Furthermore, this 
study demonstrates a straightforward simple and accu-
rate process, which is not always the case in other stud-
ies that used for example image processing, and feature 
engineering, which might be complicated to apply in the 
standard of care. Finally, due to concerns that are still 
available among orthodontists regarding the usage of 

machine-learning models in the diagnosis process, this 
study demonstrated the power of this tool.

Conclusion
This research revealed new information regarding the 
distinct characteristics for each cluster within all data 
and for each patient group (skeletal class I/II) separately. 
Although age and gender are confounding factors influ-
encing cephalometric measurements, they appear not 
to be important variables for skeletal class diagnosis in 
machine learning models. The GLM method, applied 
in a model considering SNA, SNB, and Wits appraisal 
only demonstrated 99.48% accuracy, and could be more 
accurate than the traditional equation used nowadays. In 
addition, by incorporating the machine-learning mod-
els suggested in this study, orthodontic practitioners can 
save valuable time and effort in the diagnosis process by 
focusing only on specific parameters and without the 
need for matching any equations that can misclassify 
borderline cases. We believe that the use of the models 
suggested in this study can contribute to precise, person-
alized diagnosis and treatment planning. Furthermore, 
the relevance of those cephalometric parameters in the 
machine learning model illustrates the importance of 
accurate and reliable identification of the corresponding 
landmarks. Future investigations should aim to match 
sample sizes of the age subgroups and validate these find-
ings in larger, new populations.
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